

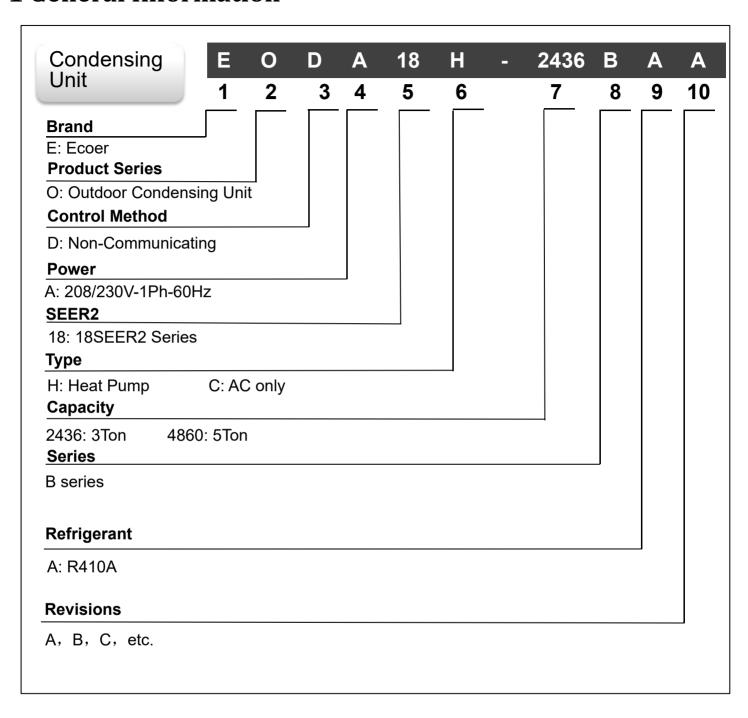
ESi Decades Extreme R-410A Unitary Service Manual

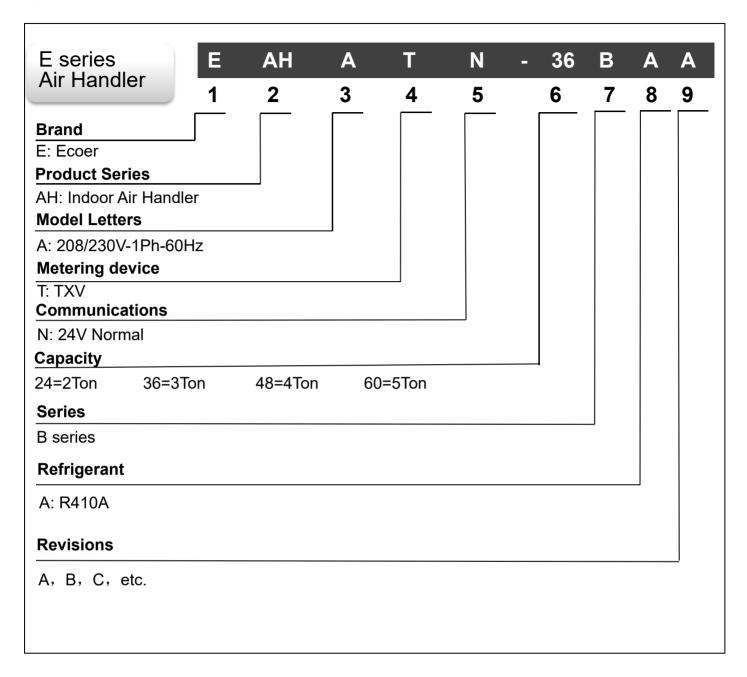
Contents

1.	General Information	3
2.	ESI Unitary System	4
	2.1 Refrigerant Circuit	4
	2.2 Function and Control	8
	2.3 Field Setting	20
3.	Troubleshooting	30
	3.1 Problems without Codes	30
	3.2 Error Codes list	32
4.	Parts List	60
5.	Appendix	62
	5.1 Sensor Characteristics	62
	5.2 Wiring Diagram	66

All phases of this installation must comply with National, State and Local Codes.

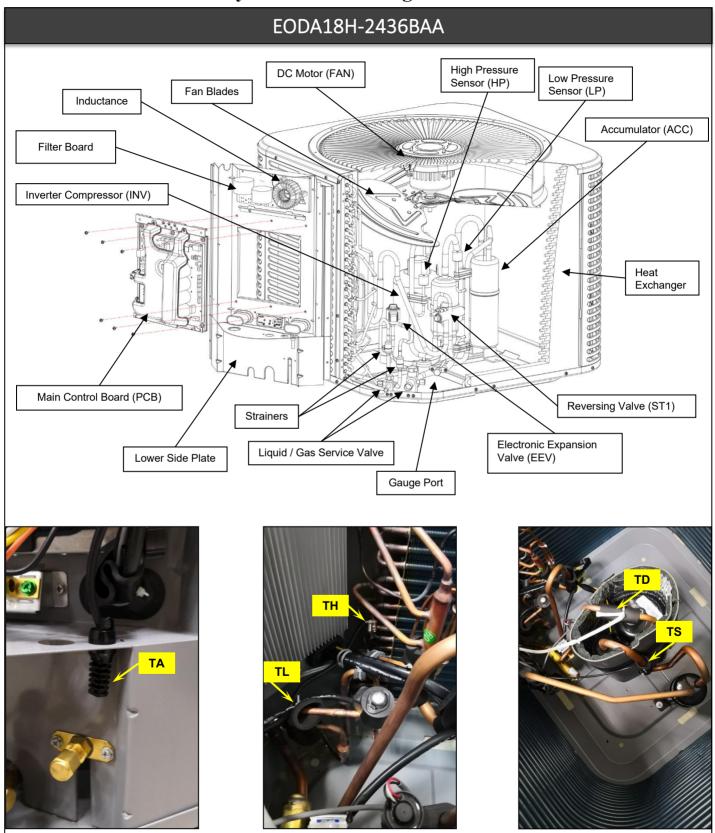
IMPORTANT

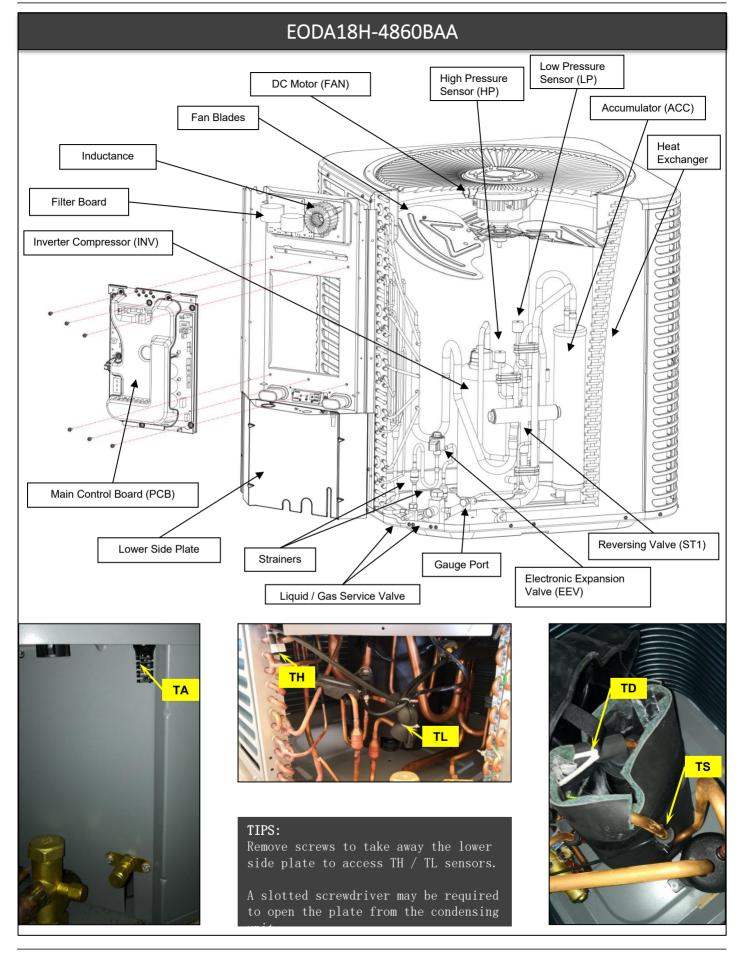

These instructions do not cover all variations in systems or provide for every possible contingency to be met in connection with installing and servicing. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to local distributor.



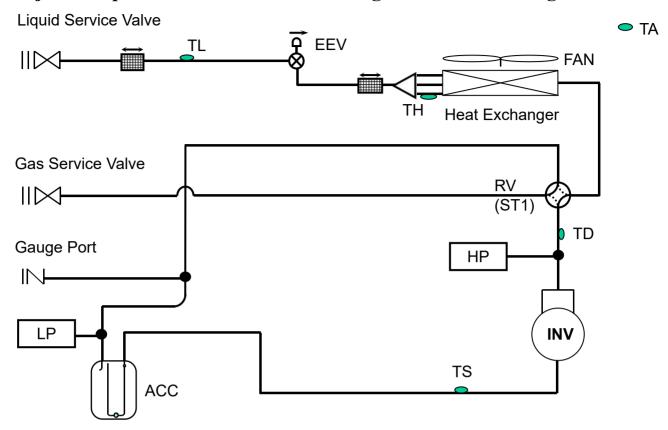
2/66

1 General Information

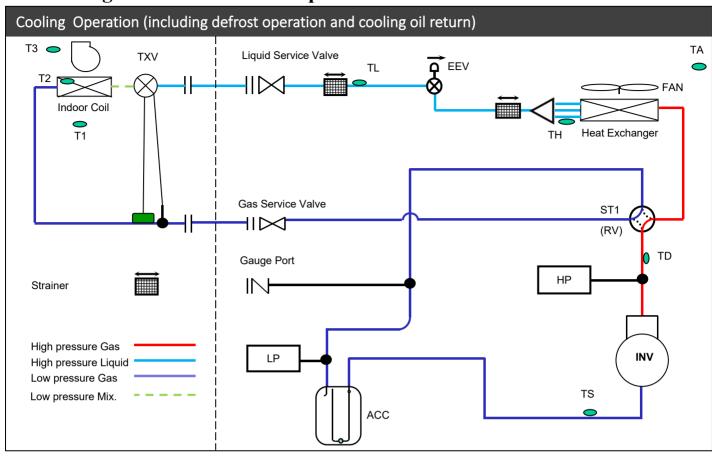

1 General Information

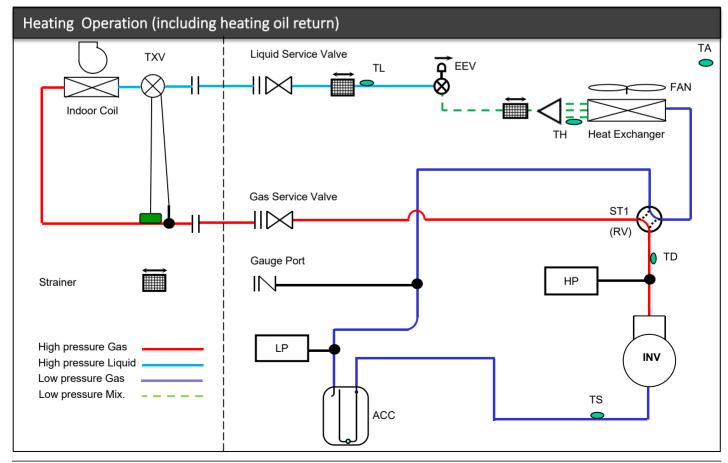


2 ESi Decades Extreme Unitary System

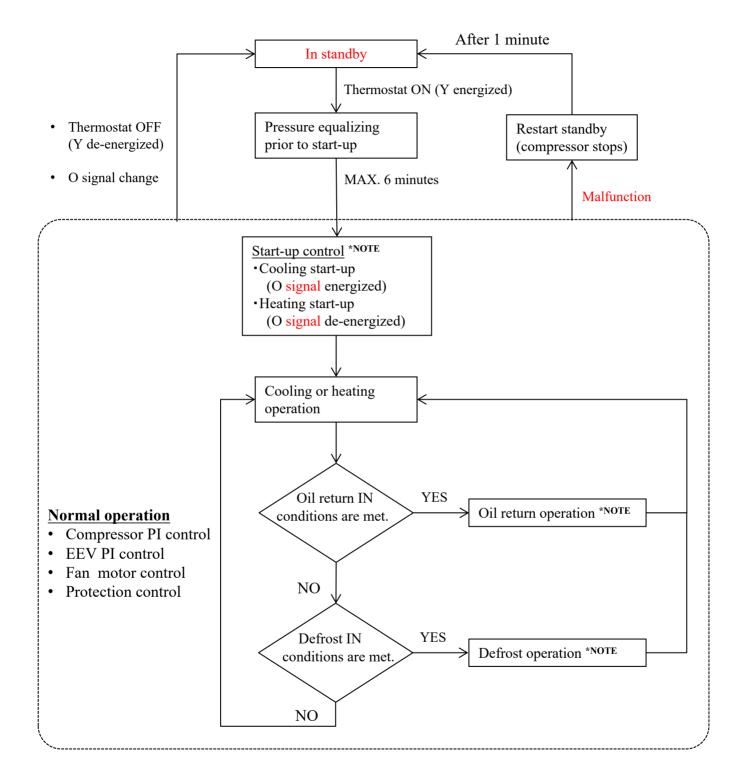

2.1 Refrigerant Circuit

2.1.1 Functional Parts Layout of Condensing Units




2.1.2 Major Components Functions and Refrigerant Circuits Diagram

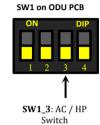
Name	Symbol	Function			
Inverter compressor	INV	Adjusts refrigerant flow rate by changing the compressor speed (RPS) based on objective pressure.			
DC motor	FAN	Outputs heat exchanger capacity by adjusting the motor rotation speed based on operating pressure.			
Electronic expansion valve	EEV	 Fully open in cooling mode and defrost operation. Control compressor discharge superheat in heating mode. 			
Reversing valve	RV (ST1)	Switches the operation mode between heating and cooling (including defrost control).			
	TA	Uses to detect outdoor air temperature and control fan speed.			
	TS	Uses to detect compressor suction temperature and calculate compressor suction superheat (SH).			
Temperature sensor	TD	Uses to detect compressor discharge temperature and calculate compressor discharge superheat (DSH).			
	TH	Uses to control defrosting during heating operation.			
	TL	Uses to detect liquid line temperature and calculate sub-cooling (SC).			
	TF	Uses to detect heat sink temperature of inverter module.			
High pressure sensor	НР	Uses to detect high pressure.			
Low pressure sensor	LP	Uses to detect low pressure.			
Accumulator	ACC	Uses to store excess refrigerant.			


2.1.3 Refrigerant Flow of Each Operation Mode

2.2 Function and Control

2.2.1 Operation Mode

NOTES: The operation may be enforced to complete under some conditions.


2.2.2 Basic control

2.2.2.1 Normal control

Input Signal Actuator		Cooling control (including cooling oil return)	Heating control (including heating oil return)		
Y	Compressor (INV)	Apply PI control to maintain Tes*1	Apply PI control to maintain Tcs*1		
Y / O*2	Outdoor fan (FAN)	Cooling fan control	Heating fan control		
0*2	Reversing valve (ST1)	De-energized(208/230VAC)	Energized (208/230VAC)		
Y / O*2	Electronic expansion valve (EEV)	480pls	PI control to maintain discharge superheat (DSH)		

Remarks:

- Tes: Target Te value (Varies depending on the load of space, mode choice, silent setting, etc.)
 Te: Low pressure equivalent saturation temperature
 Tcs: Target Tc value (Varies depending on the load of space, mode choice, silent setting, etc.)
 Tc: High pressure equivalent saturation temperature
- 2. SW1_3=OFF (factory), condensing unit uses Y/C/O (**O for cooling**) signal to operate heat pump. SW1_3=ON has been set, condensing unit uses Y/C signal to run cooling only.

2.2.2.2 Defrost control

This system carries out demand defrost control if any one of the following conditions satisfy.

- I. The calculated temperature difference between ambient temperature (TA) and defrost temperature (TH) is called Delta T. After Delta T is achieved and continues for 5 minutes.
 - a) TA is between $41^{\circ}F$ and $59^{\circ}F$: TH $\leq 30^{\circ}F$, Delta T = $18^{\circ}F$
 - b) TA is between $19^{\circ}F$ and $41^{\circ}F$: TH $\leq 30^{\circ}F$, Delta T = $12 \sim 18^{\circ}F$
 - c) TA is less than $19^{\circ}F$: TH < $9^{\circ}F$, accumulative compressor run time ≥ 80 minutes

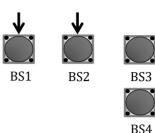
TH back-up running: TA < 59° F and LP ≤ 90 psi, accumulative compressor run time ≥ 60 minutes

- II. After "Minimum Run Time" (MRT) is achieved.
 - a) MRT is 3.5 hours if TA is less than 23°F
 - b) MRT is 2 hours if TA is between 23°F and 43°F
- III. The high pressure drops below 245psi for 20 minutes if TA is between $14^{\circ}F$ and $28^{\circ}F$.

Defrost Exit:

Defrost will be terminated once defrost temperature sensor (TH) reaches 64°F for one (1) minute or the defrost time has exceeded eight (8) minutes. Defrost mode setting (n04) offers termination options for different geographical conditions.

- a) <u>Defrost in heavy snow area</u> will extend defrost for one (1) minute, but reduce the heating time to execute more defrost cycles.
- b) <u>Defrost in light snow area</u> will reduce defrost for 30 seconds.


2.2.2.3 Manual Defrost

Manual defrosting mode can be used when verifying defrosting or forcing defrosting.

Note: After 5-10 minutes of continuous heating operation, the unit can respond to manual defrosting in time; otherwise, the unit will enter after meeting the requirements.

Enter in either way:

Hold on BS1+BS2 for 5 seconds / n08

Exit in either way:

Defrost exit automatically/Heating demand off/Power off

2.2.2.4 AUTO charge mode in cooling or Rated running mode

a. Actuator and procedure

Actuator	AUTO charge mode OR Rated running in cooling	Rated running in heating		
Compressor (INV)	Rated compressor speed in cooling	Rated compressor speed in heating		
Outdoor fan (FAN)	Cooling fan control	Heating fan control		
Reversing valve (ST1)	De-energized(208/230Vac)	Energized (208/230Vac)		
Electronic expansion valve (EEV)	480pls	PI control to maintain DSH		

Step by Step procedure (A: Charging mode/B: Rated running):

- 1. Setting the operating mode from thermostat.
- *Note: A low(cooling)/high(heating) target temperature is recommended for continuous operation of the unit.
- 2. Run for about 15 minutes.
- 3. Check the SSH (only for charge mode in cooling):

If the suction superheat is beyond 7-20°F, please use a wrench to **adjust** the TXV opening, see tips for details.

Rough Target SSH in cooling

Note: SSH are available from Spot Check(03-) by press BS3 or Ecoer Pro APP.

4. In the operation, setting Rated running model from OD unit.

Please Hold and press BS4 button for 5 seconds until you see blinking "7".

*Note: Once Rated running is activated. The coefficient number (or "--") and "7" will be displayed on LED alternately in about 1 minute.

5. Run for another 10 minutes.

6. A: Check the refrigerant coefficient:

Check refrigerant coefficient number from LED display or ESS Pro App, **pls see nest page for the suggestion of charging**.

If adjust the charging, please repeat 5.1 after 5 minutes.

6. B: Check operating status:

Check the operation status as field required

Use either way below to end:

Press BS4/shut off from thermostat/Power off/running for 120 minutes.

b. Charge confirm in Auto charge mode in cooling

- **It is the only recommended method of charging above 55°F outdoor ambient temperatures.
- **It is important to return in the spring or summer to accurately charge the system in the cooling mode when outdoor ambient temperature is above 55°F.

Run the system for $15\sim20$ minutes and check **refrigerant coefficient** number (here short for "X", 0 < X < 1) from the LED display. If X > 0.6, remove refrigerant; or X < 0.4, add more refrigerant. Then wait for 5 minutes to allow system pressure balanced. Check the new coefficient number to make sure you get 0.5 - 0.6. Basically, 0.4 to 0.6 is acceptable if $7^{\circ}F \le SSH \le 20^{\circ}F$.

When the LED displays "--" for more than 20 minutes, stop charging and adjust the TXV opening to ensure required compressor suction superheat (Refer to the TIPS "How to adjust indoor TXV opening").

Refrigerant coefficient

The refrigerant coefficient is used to evaluate the refrigerant level in the ecoer system.

Undercharged		Proper		Overcharged				
0	0.4	0	5	0.6	0.	7	1.0	

Use either way below to end AUTO charge mode

Press **BS4 once**/ After 2 hours running (Automatically EXIT)/ Turn off the system at thermostat

NOTES:

1. This AUTO charge mode is suitable for ambient temperature between 50°F and 115°F. But for the best results, indoor temperature should be kept between 70°F and 80°F. For outdoor ambient temperature is below 50°F, use weigh-in charge method only.

Fig 13-2 Temperature limit for AUTO charge mode

2. Start-up control is enforced to complete prior to activate the AUTO charge mode. It may take 4 to 10 minutes to exit start-up control procedure and fix the compressor speed (RPS).

2.2.2.5 Pump down function

b. Pump down in cooling only

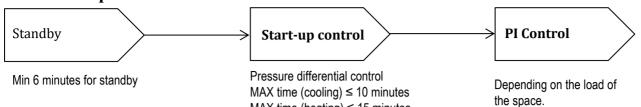
Actuator	Pump down in cooling
Compressor (INV)	Rated compress speed to Low compressor speed
Outdoor fan (FAN)	Cooling fan control
Reversing valve (ST1)	De-energized
Electronic expansion valve (EEV)	480pls

Pump down Step by Step:

- 1. Setting in cooling mode from thermostat.
- *Note: A low target temperature is recommended for continuous operation of the unit.
- 2. Run for about 10 minutes.
- 3. In cooling running, Setting Pomp down mode from OD unit. Please Hold and press BS4 button for 5 seconds until you see blinking '7', press BS2 button in one minute to get '8'.
- *Note: Once pump down is activated. "8" or "8" alternating with LP (PSIG) will be displayed on the LED.

4. Confirm the alternate display of "8" and LP(PSIG), close the liquid service valve, and then close service valve quickly when the suction pressure drops to 40 PSIG.

Note: The pressure protection is valid if LP < 24.5 PSIG.


Note: It is recommended to close the two service valves to half first to deal with LP protection shutdown more quickly.

5. Power off.

Use either way below to end:

Press BS4/shut off from thermostat/Power off/running for 120 minutes.

2.2.2.6 Compressor control

MAX time (heating) ≤ 15 minutes

[Compressor RPS VS STEP]

STEP	RPS	STEP	RPS
1	-	10	30
2	-	11	32
3	16	12	34
4	18	13	36
5	20	14	38
6	22	15	40
7	24	16	42
8	26	17	44
9	28	18	46

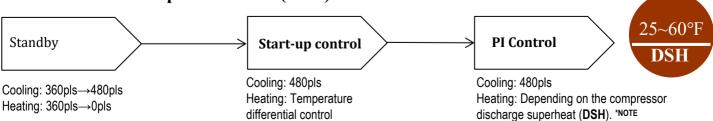
STEP	RPS
19	48
20	50
21	52
22	54
23	56
24	58
25	60
26	62
27	64

STEP	RPS
28	66
29	68
30	70
31	72
32	74
33	76
34	78
35	80
36	82

STEP	RPS
37	84
38	86
39	88
40	90
41	92
42	94
43	96
44	98
45	100

Outdoor Capacity	2Ton	3Ton	4Ton	5Ton
Cooling Max RPS	70	86	66	76
Heating Max RPS (Ta≥45°F)	64	82	64	72
Heating Max RPS (45°F>Ta≥23°F)	80	94	80	86
Heating Max RPS (Ta<23°F)	90	108	86	92

2.2.2.7 Fan control


Initial Step

[Fan RPM VS STEP]

Cooling fan control by high pressure Heating fan control by low pressure

Mode	STEP/RPM								
Tons	0	1	2	3	4	5	6	7	8
2	0	250	350	430	530	630	660	780	880
3	0	250	350	480	580	660	730	830	930
4	0	250	350	480	580	700	780	880	980
5	0	250	350	550	630	780	830	930	1030

2.2.2.8 Electronic expansion valve (EEV) control

NOTE: Heating DSH should be between 25 F and 60 F with proper refrigerant level.

2.2.2.9 Silent mode

In order to decrease the noises produced by condensing unit, the crucial noise resources should be limited. Once the silent mode has been activated by n05, n06 and n07 (refer to field setting), both the highest compressor frequency (RPS) and fan speed (RPM) are limited.

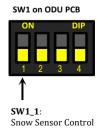
Maximum compressor frequency

Cooling Max Compressor RPS				
Condenser Capacity	Standard Mode	Silent Mode (Level 1)	Super Silent Mode (Level 2)	
2Ton	70	66	56	
3Ton	80	76	70	
4Ton	66	66	56	
5Ton	76	68	58	

Heating Max Compressor RPS				
Condenser Capacity	Standard Mode	Silent Mode (Level 1)	Super Silent Mode (Level 2)	
2Ton	80	70	60	
3Ton	90	78	72	
4Ton	80	62	52	
5Ton	90	70	60	

Maximum fan speed

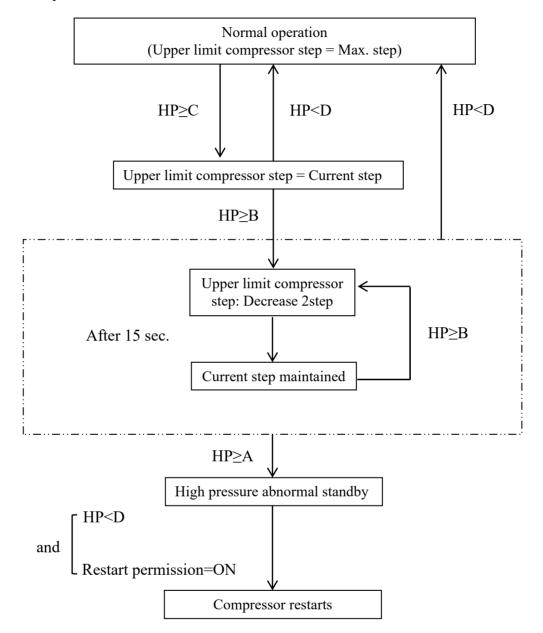
Max Fan Speed (RPM)			
Condenser Capacity	Standard Mode	Silent Mode (Level 1)	Super Silent Mode (Level 2)
2Ton	880	640	530
3Ton	930	730	580
4Ton	980	780	580
5Ton	1030	830	630


2.2.2.10 Snow Sensor Control

To prevent the fan of condensing unit from covering up by heavy ice. ESI equips with the snow sensor control function if the ambient temperature is no higher than 41F.

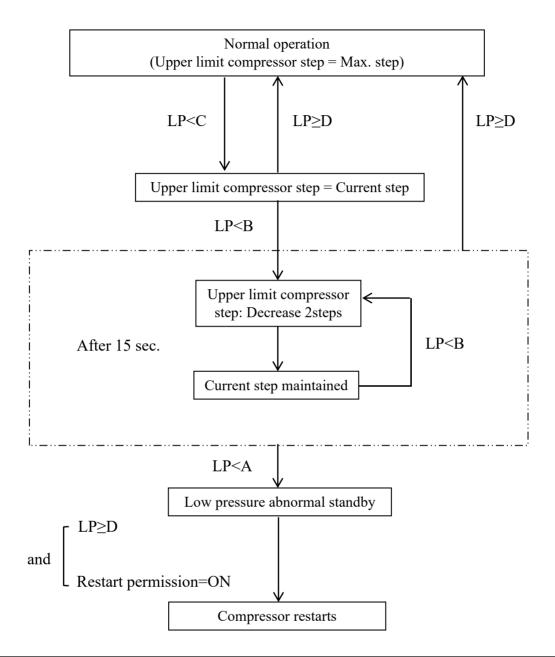
When the snow sensor control works, ODM rotate at the 3th step for 2min then shut down.

ODU	OD Fan Tap	Heavy Snow	Standard	Light Snow
2/3T	STEP3	30 min	00	120 min
4/5T	STEP3	50 Min	90 min	120 min


SW1 Dip switch		Description	
NO.	Setting item	Status	Content
1	C C	ON	Disable
1	Snow Sensor Control *	OFF (factory)	Enable

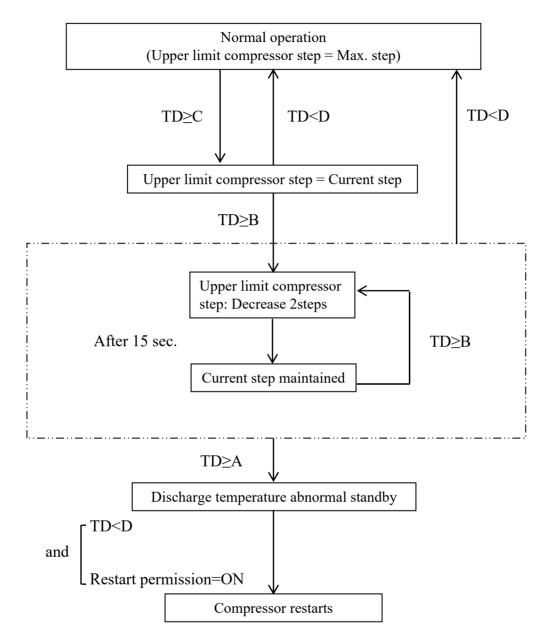
2.2.3. Protection controls

2.2.3.1 High pressure protection control


High pressure (HP) protection control is used to prevent extremely high pressures in the system and protect the compressor.

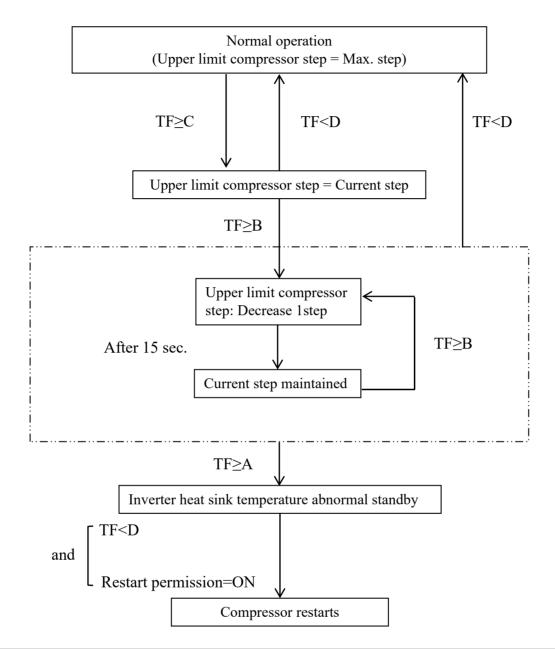
Crombal	EODA18H-2436/4860		
Symbol	Cooling	Heating	
A	545psig [3.8MPa]	545psig [3.8MPa]	
В	493psig [3.4MPa]	479psig [3.3MPa]	
С	479psig [3.3MPa]	450psig [3.1MPa]	
D	464psig [3.2MPa]	421psig [2.9MPa]	

2.2.3.2 Low pressure protection control in cooling mode


Low pressure (LP) protection control in cooling is used to protect compressor against the transient decrease of low pressure.

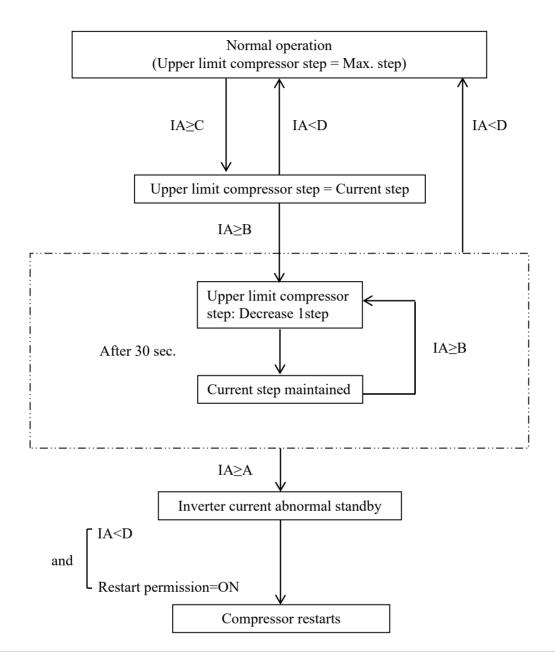
Symbol	EODA18H-2436/4860
A	24.5psig [0.17MPa]
В	43.5psig [0.30MPa]
С	61.0psig [0.42MPa]
D	72.5psig [0.50MPa]

2.2.3.3 Discharge temperature protection control


This discharge temperature (TD) protection control is used to protect the compressor internal temperature against a malfunction or transient increase of discharge pipe temperature.

Combal	EODA18H-2436/4860		
Symbol	Cooling	Heating	
A	248°F (120°C)	230°F (110°C)	
В	230°F (110°C)	212°F (100°C)	
С	212°F (100°C)	194°F (90°C)	
D	194°F (90°C)	176°F (80°C)	

2.2.3.4 INV Module temperature protection control


Inverter module temperature (TF) protection control is performed to prevent tripping due to an abnormal increase in temperature.

Combal	EODA18H-2436		EODA18H-4860	
Symbol	Cooling	Heating	Cooling	Heating
A	199°F (93°C)	185°F (85°C)	203°F (95°C)	185°F (85°C)
В	192°F (89°C)	167°F (75°C)	185°F (85°C)	167°F (75°C)
С	185°F (85°C)	160°F (71°C)	178°F (81°C)	160°F (71°C)
D	180°F (82°C)	154°F (68°C)	172°F (78°C)	154°F (68°C)

2.2.3.5 Compressor over-current protection control

This control is performed to prevent tripping due to an abnormal transient compressor current (IA).

Cymbol	EODA18H-2436		EODA18H-4860	
Symbol	Cooling	Heating	Cooling	Heating
A	14A	14A	20A	20A
В	7.6A	7.6A	12.1A	12.1A
С	7.2A	7.2A	11.7A	11.7A
D	6.8A	6.8A	11.2A	11.2A

2.3 Field Setting

2.3.1 Default display

LED on main control board can display the operating status of outdoor unit (ODU).

SEG1: Normally blank, but it displays codes "0 to 9" accordingly if there is damaged sensor and command response.

SEG1 Code	Description	Time
0	Software is updating through IoT device	About 5 min.
1	High pressure sensor (HP) fault back-up running	7 Days
2	Low pressure sensor (LP) fault back-up running	7 Days
3	Compressor discharge temperature sensor (TD) fault back-up running	7 Days
4	IPM module temperature sensor (TF) fault back-up running	7 Days
5	Ambient temperature sensor (TA) fault back-up running	120 Days
6	Defrost sensor (TH) fault back-up running	90 Days
7	Compressor suction temperature sensor (TS) fault back-up running	120 Days
8	Liquid line temperature sensor (TL) fault back-up running	120 Days
9	IoT command response	-

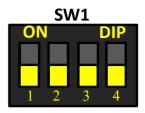
SEG2: Normally blank, but it will display code accordingly as below if outdoor unit is running under limited condition.

SEG2 Code	Description
0	Running under high pressure (HP) limit
1	Running under low pressure (LP) limit
2	Running under discharge temperature (TD) limit
3	Running under IPM module temperature (TF) limit
4	Running under compressor current limit

SEG3: It displays outdoor unit's operation mode.

SEG3 Code	Description
0	Stop (Y signal de-energized)
1	Ready to start-up (Y signal energized) *Note
2	Cooling
3	Heating
4	Oil return
5	Defrost
6	Manual defrost
7	AUTO charge mode in cooling
8	Pump down

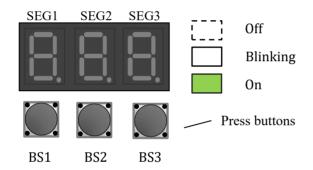
Note: Compressor waits three to eight minutes to restart.


Modes list (SEG3 Display)

Stop or standby (Y signal de-energized)	SEG1 SEG2 SEG3
Ready to start-up (Y signal energized)	SEG1 SEG2 SEG3
(6 to 8 minutes for pressure equalization to restart)	
Cooling	SEG1 SEG2 SEG3
Heating	SEG1 SEG2 SEG3
Oil return	SEG1 SEG2 SEG3
Defrost	SEG1 SEG2 SEG3
Manual defrost	SEG1 SEG2 SEG3
AUTO charge mode in cooling	SEG1 SEG2 SEG3
Pump down (only cooling)	SEG1 SEG2 SEG3

2.3.2 Setting by dip switches

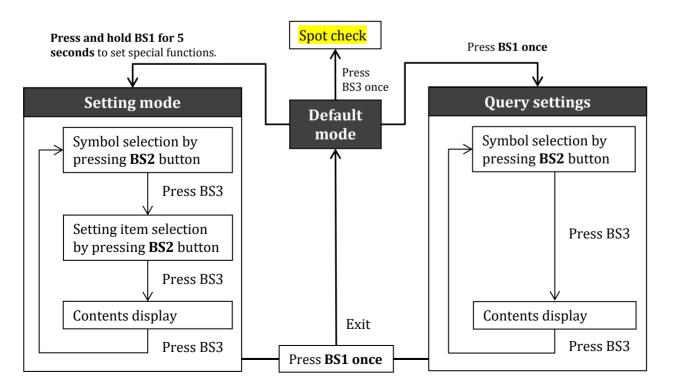
Condensing functions can be applied by dipping switch and pressing buttons.


SW1 dip switch		Description		
NO.	Setting item	Status	Content	
1	Snow Sensor Control *a	ON	Disable	
		OFF (factory)	Enable	
2	Capacity selection	ON	2 or 4 Ton	
		OFF (factory)	3 or 5 Ton	
3	AC only/Heat pump selection	ON	AC only	
		OFF (factory)	Heat pump	
4	Command *b response for IoT	ON	<mark>Disable</mark>	
		OFF (factory)	<mark>Enable</mark>	

Use minor straight screwdriver to dip switch. Must power off the unit for at least 2 minutes to activate the change.

2.3.3 Setting by pressing buttons

Query and setting operations can be done by pressing buttons on main control board.



BS1: Menu or back button

BS2: UP button

BS3: Spot check and confirm button

Remarks: Press or tip any directions are valid.

^{*} Remote field setting, troubleshooting, software updates and so on.

Default mode (Spot check)

System states can be showed on the 7 segments display (LED) of outdoor unit. Press **BS3** button to get code number and corresponding detailed information with an interval of one second.

Example:

Code number

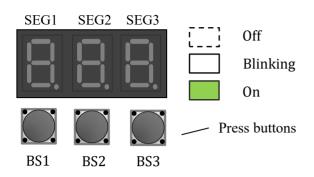
Detailed information

No.	Number content	Example	Description
NO.	Number content	Example	-
Default	Refer to default display instructions	902	9: Command 0: Running under high pressure limit 2: Cooling mode
01-	Outdoor unit type and capacity	НЗ	H: heat pump C: AC only 3: 3Ton
02-	Liquid line sub-cooling	10	10°F
03-	Compressor suction superheat	18	18°F
04-	Compressor speed	56	56RPS
05-	Electronic expansion valve opening	360	360pls
06-	Step of fan	8	The 8th step
07-	Low pressure (LP sensor)	145	145psig
08-	High pressure (HP sensor)	350	350psig
09-	Outdoor ambient temp. (TA)	95	95°F
10-	Compressor suction temp. (TS)	70	70°F
11-	Compressor discharge temp. (TD)	170	170°F
12-	Defrost sensor temp. (TH)	80	80°F
13-	Liquid line temp. (TL)	70	70°F
14-	Inverter module temp. (TF)	150	150°F
15-	Target evaporating temp. (Tes)	43	43°F
16-	Current evaporating temp. (Te)	45	45°F
17-	Target condensing temp. (Tcs)	104	104°F
18-	Current condensing temp. (Tc)	112	112°F
19-	Compressor DC current	10.1	10.1A
20-	Undercharged refrigerant signal	1	0: None 1: Level 1 2: Level 2 (severe)
21-	Main software version	A01	A01 version
22-	Inverter software version	b01	b01 version
23-	Current fault	E1	Display up to 5 * codes
24-	The last fault	F1	: None
25-	Fault before the last fault	F2	: None
26-	Product series	2	2: B series

Remark:

When multi-error codes exist at the same time, each code will be displayed one by one with an interval of one second.

Setting mode

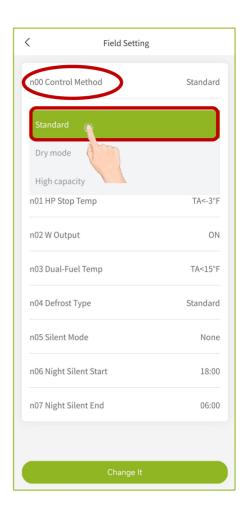

Press and hold **BS1** button for 5 seconds to enter the parameter setting interface. The latest setting will be taken as the final one. Refer to the following pages for some settings example.

Symbol	Function	Item	Description
		0(factory)	Normal (Energy Saving) mode
n00	Mode choice	1	Dry mode *1
		2	High capacity mode *2
	_ ,,	0	Stop heat pump when TA<-22°F
	Forced heat pump stop when ambient temperature is lower than specified	1(factory)	Stop heat pump when TA<-3°F
n01		2	Stop heat pump when TA<15°F
	value. Switching to heat by gas furnace or boiler in cold winter. *3	3	Stop heat pump when TA<30°F
	or boner in cold willter. '5	4	Stop heat pump when TA<40°F
n02	Indoor second heater for outdoor unit outputs 24VAC at W terminal (CN5). *3	0(factory)	ON (Electric auxiliary heater)
1102		1(factory)	OFF (Furnace or Boiler)
	Outdoor unit outputs 24VAC at W	0(factory)	TA<15°F (24VAC output)
	terminal (CN5) when ambient	1	TA<30°F (24VAC output)
n03	temperature is lower than specified	2	TA<40°F (24VAC output)
	value to start indoor electric auxiliary heater. *3	3	TA<-3°F (24VAC output)
		4	OFF
		0	Defrost in heavy snow area
n04	Defrost mode setting *4	1(factory)	Standard mode
		2	Defrost in light snow area
		0(factory)	None silent mode
		1	Silent mode (level 1)
n05	Silent mode setting	2	Super silent mode (level 2)
1100		3	Night silent mode (level 1)
		4	Night super silent mode (level 2)
		0	17:00
	Night silent setting- start time	1(factory)	18:00
n06		2	19:00
		3	20:00
		4	21:00
	Night silent setting- end time	0	5:00
n07		1(factory)	6:00
		2	7:00
		3	8:00
		4	9:00
n08	Forced defrost	0(factory)	OFF
1108	rorceu uen ost	1	ON *5

Remarks:

- 1. The evaporating temperature of indoor coil can drop down to $28^\circ F$.
- 2. The evaporating temperature of indoor coil can drop down to $28^{\circ}F$ in cooling mode, and the condensing temperature can go up to $122^{\circ}F$ in heating mode.
- 3. N01/n02/n03 Settings do not affect the output 24V of W terminal during defrost.
- 4. Reduce about 10% heating time for heavy snow area, increase about 10% heating time for light snow area.
- 5. System enters defrost after the heating start-up and an extra five minutes' control.

Example for mode choice (n00) setting

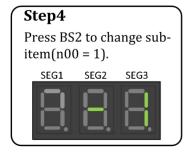


BS1: Menu or back button

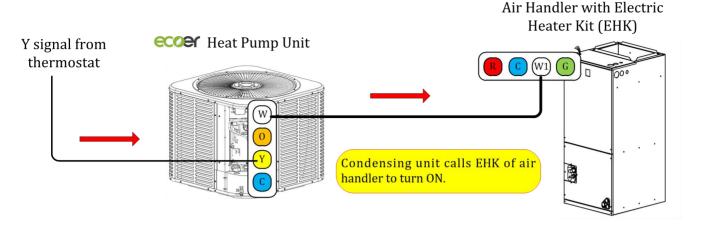
BS2: UP button

BS3: Spot check and confirm button

Remarks: Press or tip any directions are valid.



Step1 Press and hold BS1 for 5 seconds. SEG1 SEG2 SEG3


n00=0, Normal mode./ n00=1, Dry mode./ n00=2, High capacity mode.

Example for n02 & n03 (Dual-heating) setting

n02 Select the second heat source device type between gas furnace and electric heating.

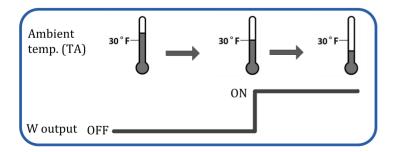
0: ON (Electric auxiliary heater) -- Factory

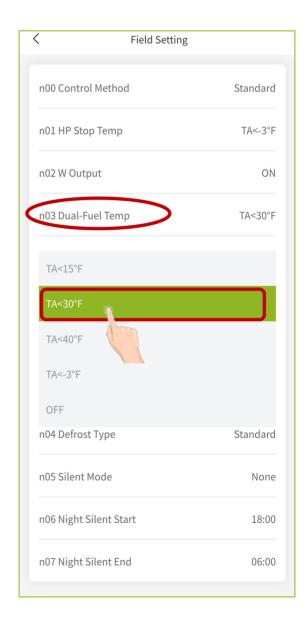
1: OFF(Furnace or Boiler)

n03 Outdoor W terminal outputs 24VAC once ambient temperature is lower than specific value with pretty low high pressure for backup when n02 is ON.

Only when Y signal energized with n02 set to ON.

0: TA<15°F (24V output) -- Factory


1: TA<30°F (24V output)

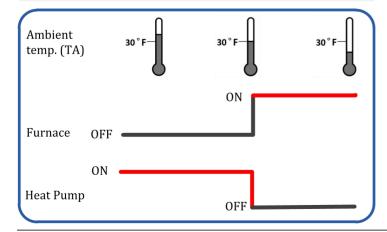

2: TA<40°F (24V output)

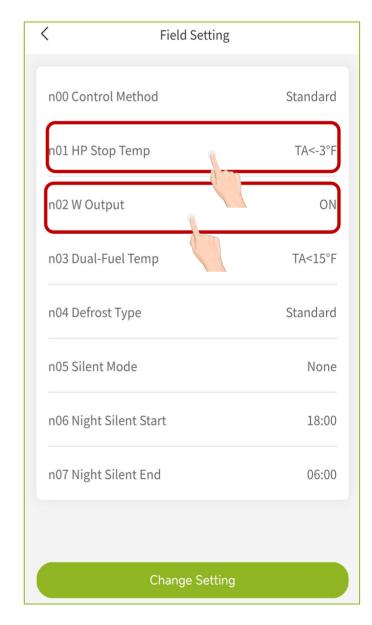
3: TA<-3°F (24V output)

4: OFF

Example: W outputs 24VAC when TA< 30°F. n02 = 0 n03 = 1

Example for n02 & n03 setting (AUTO change-over heating)


Y signal from thermostat Condensing unit calls gas furnace n01 Forced heat pump stop

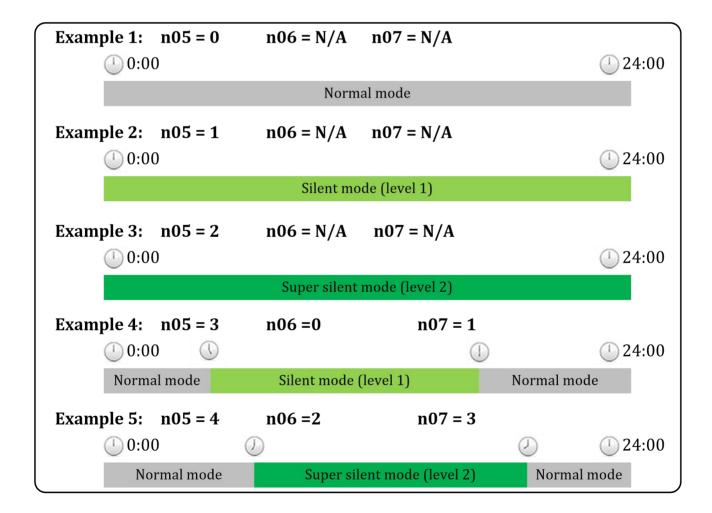

- 0: TA<-22°F
- 1: TA<-3°F (factory)
- 2: TA<15°F
- 3: TA<30°F
- 4: TA<40°F
- n02 Outdoor W terminal outputs 24VAC at defrost control or forced heat pump stop temperature.
 - 0: ON (Electric auxiliary heater) -- Factory
 - 1: OFF(Furnace or Boiler)--Selection
- n03 Outdoor W terminal outputs 24VAC once ambient temperature is lower than specific value with pretty low high pressure.
 - 0: TA<15°F (24V output) -- Factory
 - 1: TA<30°F (24V output)
 - 2: TA<40°F (24V output)
 - 3: TA<-3°F (24V output)
 - 4: OFF

Example:

Auto change-over for furnace and heat pump at TA=30 °F

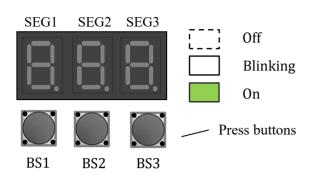
- n01 = 3 Y signal energized but heat pump won't start-up
- n02 = 1 Selection
- n03 = 0

Cased Coil with Furnace


Illustration for n05 to n07 settings

Noise of silent mode is about 3 dB lower than normal mode.

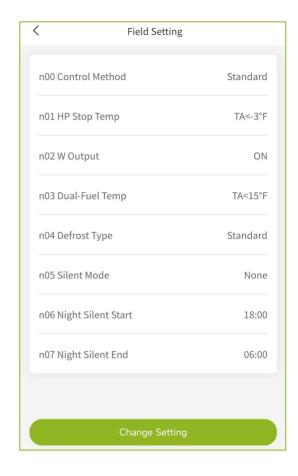
Noise of super silent mode is about 6 dB lower than normal mode.


n05 Silent mode setting.
0: None silent modeFactory1: Silent mode (level 1)2: Super silent mode (level 2)
3: Night silent mode (level 1) 4: Super night silent (level 2)

n06	n07
Night time setting	Night time setting
- Start time.	- End time.
0: 17:00	0: 5:00
1: 18:00 (Factory)	1: 6:00 (Factory)
2: 19:00	2: 7:00
3: 20:00	3: 8:00
4: 21:00	4: 9:00

Silent mode Settings

Press **BS1** button once to query the current settings, or check it via Ecoer Smart Service Pro App.



BS1: Menu or back button

BS2: UP button

BS3: Spot check and confirm button

Remarks: Press or tip any directions are valid.

Step1

Press BS1 to enter query setting mode.

Step2

Press BS2 to select item (n05 for this case).

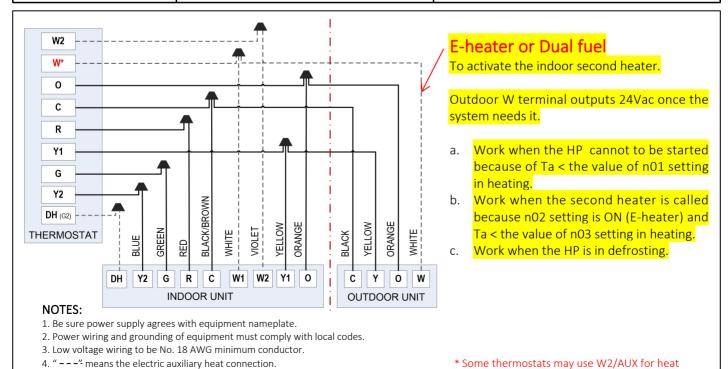
Step3

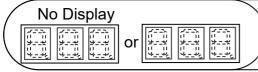
Press BS3 to check the current setting (n05 = 1).

Step4

Press BS3 to Step 2 for other setting check.

Press BS1 to return.

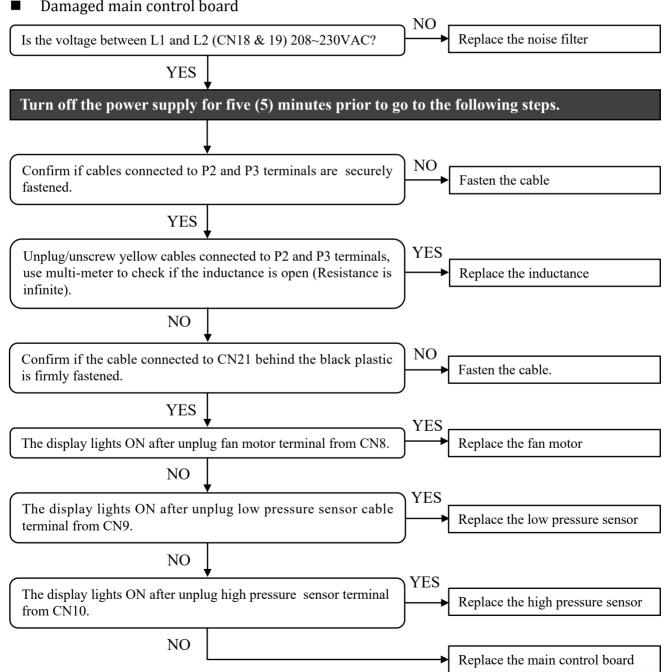



3. Troubleshooting

3.1 Problems without Codes

If the system does not operate properly besides any malfunctions. Check the system based on the following procedures.

Symptoms	Possible causes	Solutions
The unit energized but the digital tube shows nothing		See the following page
System does not start-up but the digital tube shows normally	 No 24 VAC for Y signal from thermostat Incompatible thermostat 	 Be sure Y/O/C wirings are connected correctly and the setting temperature at thermostat is proper. Use other traditional 24VAC thermostats
System operates mode reversely	Incorrect O/B signal selection	Choose O for cooling at thermostat
System cannot cool well	 Outside temperature is too high Outside temperature is too low Dirty air filter or blocked duct Lack of refrigerant Refrigerant has been blocked in the condenser coil 	 Normal protection control to limit RPS Ensure the cooling loads Replace the air filter and eliminate any obstacles Check refrigerant amount or any leaks Counterclockwise the TXV (Make sure the refrigerant coefficient is 0.6)
System cannot heat well	 Outside temperature is too low but no third-party heat inside The outdoor coil is dirty or has been covered by heavy snow Dirty air filter Micro channel (MC) coil has been used Lack of refrigerant 	 Install auxiliary heat for back-up *Dualheating is recommended Clean the outdoor coil Replace the air filter No MC coils shall be used for heat pump Check refrigerant amount or any leaks

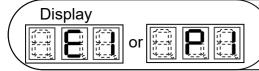

The unit energized but the digital tube shows nothing

1.Error definition:

No display on main control board even though the unit has been powered ON.

2.Possible causes:

- Damaged noise filter
- Damaged inductance
- Loose connection at port on main control board
- Damaged pressure sensor
- Damaged fan motor
- Damaged main control board


3.2 Error Codes List

Past error codes can be inquired by **BS3** button, and viewed on Ecoer Smart Service Pro App.

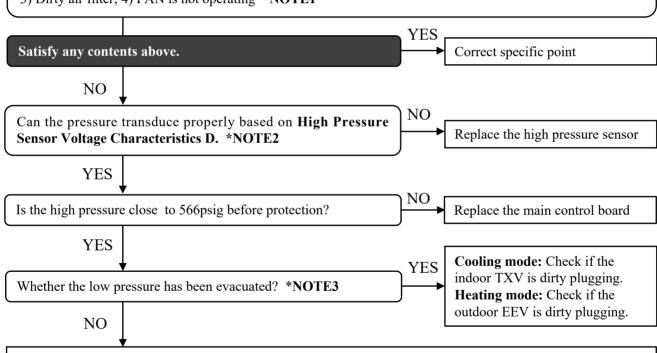
Code	Description	Legend	Page	
P1	High pressure protection		32	
E1	System locks up when P1 has occurred six times in 3 hours.	Cannot restart *1	34	
P2	Low pressure protection in cooling mode		22	
E2	System locks up when P2 has occurred six times within 3 hours.	Cannot restart *1	rt *1 33	
Р3	Compressor discharge temperature (TD) protection		2.4	
E3	System locks up when P3 has occurred six times within 3 hours.	Cannot restart *1	34	
P4	Compressor discharge temp. (TD) sensor is disconnected or damaged		35	
P5	Inverter module temperature (TF) protection		26	
E5	System locks up when P5 has occurred six times within 3 hours.	Cannot restart *1	36	
Р6	Compressor over-current protection		27	
E6	System locks up when P6 has occurred six times within 3 hours.	Cannot restart *1	37	
P7	Liquid slugging protection		20.20	
E7	System locks up when P7 has occurred three times within 5 hours.	Cannot restart *1	38-39	
P8	Low compressor voltage protection		40	
E8	System locks up when P8 has occurred three times within 60 minutes.	Cannot restart *1	40	
Р9	Incorrect compressor line sequence	Cannot restart *1	40	
PA	DC fan motor over-load protection	Cannot restart *1	41	
F1	Ambient temperature (TA) sensor fault	back-up running*2	42	
F2	Compressor suction temperature (TS) sensor fault	back-up running*2	43	
F3	Liquid line temperature (TL) sensor fault	back-up running*2	44	
F4	Defrost temperature (TH) sensor fault	back-up running*2	45	
F5	Compressor discharge temperature (TD) sensor fault	back-up running*2	46	
F6	Inverter module temperature (TF) sensor fault	back-up running*2	47	
F7	High pressure (HP) sensor fault	back-up running*2	48	
F8	Low pressure (LP) sensor fault	back-up running*2	49	
E4	Communication fault between main chip and INV drive chip	Cannot restart *1	50	
H1	Ambient temperature limit operation in cooling mode		F4	
Н2	Ambient temperature limit operation in heating mode		51	
Н3	Abnormal switch alarm for reversing valve	Alarm	52	
H4	Defrost temperature (TH) sensor is disconnected or damaged		53	
Н5	EEPROM fault		54	
Н6	Low voltage alarm		54	
HF	Abnormal function control	Alarm	55	
CO-CC			56-58	
E0	•			

Remarks:

- 1. Disconnect power supply switch for 5 minutes to reset, then turn on power supply for the unit.
- 2. Unit goes to back-up running under sensors fault varies from 7 to 120 days. Allow up to two sensors back-up running at the same time.

High pressure protection

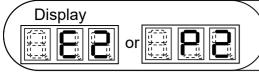
1.Error definition:


- P1: The detected high pressure is no less than 566psig.
- E1: System locks up when P1 has occurred six times within 3 hours.

2.Possible causes:

- Service valves are closed
- The system has been severely over-charged
- Dirty/Clogged heat exchanger of outdoor unit in cooling mode
- Dirty indoor air filter or micro channel coil has been used for heat pump
- The refrigerant blocked in high pressure zone because of damaged TXV/EEV
- The Dual Fuel setting is incorrect, causing the furnace and heat pump to run simultaneously.
- Damaged indoor fan motor or G signal lost resulting in indoor unit FAN stops in heating
- Damaged high pressure sensor
- Damaged main control board

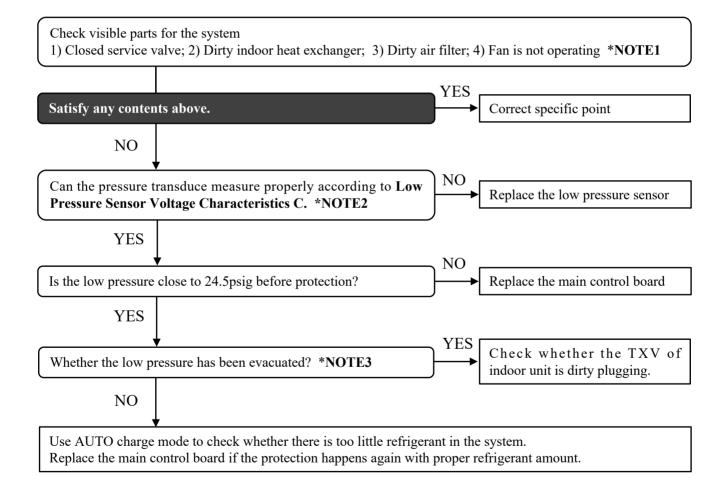
Check visible parts for the system


- 1) Closed service valve; 2) Dirty heat exchanger or micro channel coil has been used in heating operation;
- 3) Dirty air filter; 4) FAN is not operating *NOTE1

Use AUTO charge mode to check whether there is too much refrigerant in the system. Replace the main control board if the protection happens again with proper refrigerant amount.

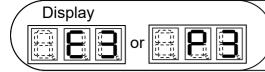
NOTES:

- 1. It's normal control if heating oil return operation is enforced to execute even though the Y signal=OFF (Indoor fan stops because there is No G signal). Or connect R and G together to judge if the fan works. Yes-> Replace the indoor PCB; No-> Replace the indoor motor.
- 2. Connect a pressure gauge to liquid service valve in cooling mode, gas service valve in heating mode. Compare the value difference between gauged pressure and the transduced one by high pressure sensor (spot check by BS3 button or check the data from ESS Pro App).
- 3. Abnormal TXV/EEV will lead to the refrigerant blockage in the high pressure side.


Low pressure protection in cooling mode

1.Error definition:

- P2: The detected low pressure in cooling mode is less than 24.5psig.
- E2: System locks up when P2 has occurred six times within 3 hours.


2.Possible causes:

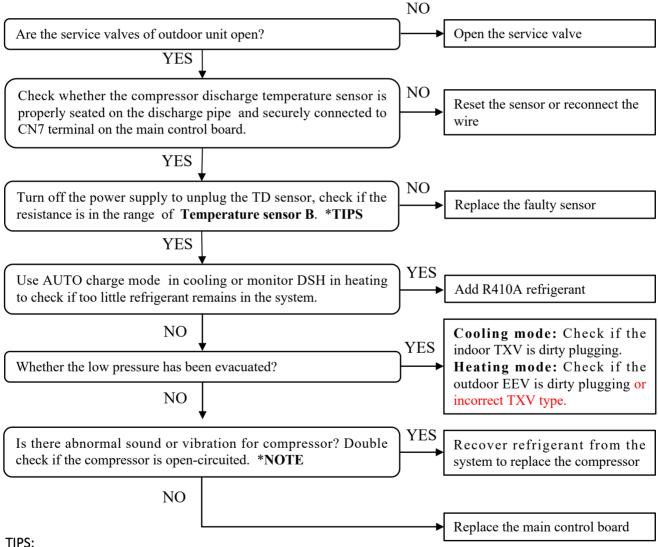
- Service valves are closed
- Dirty air filter or indoor heat exchanger
- Outside temperature is lower than 40°F
- Too little refrigerant in the system
- Damaged indoor R410A TXV
- Damaged low pressure sensor
- Damaged main control board

NOTES:

- 1. It's normal control if cooling oil return operation is enforced to execute even though the Y signal=OFF (Indoor fan stops because there is No G/G2 signal). Or connect R and G (G2) together to judge if the fan works. Yes-> Replace the indoor PCB; No-> Replace the indoor motor.
- 2. Connect a pressure gauge to gauge port, compare the difference between the gauged pressure and the transduced one by low pressure sensor (spot check by BS3 button or check the data from ESS Pro App).
- 3. Abnormal TXV will lead to the refrigerant blockage in the high pressure side.

Compressor discharge temperature (TD) protection

1.Error definition:


P3: The detected discharge temperature(TD) is no less than specified value.

Cooling: 248°F Heating: 230°F

E3: System locks up when P3 has occurred six times within 3 hours.

2.Possible causes:

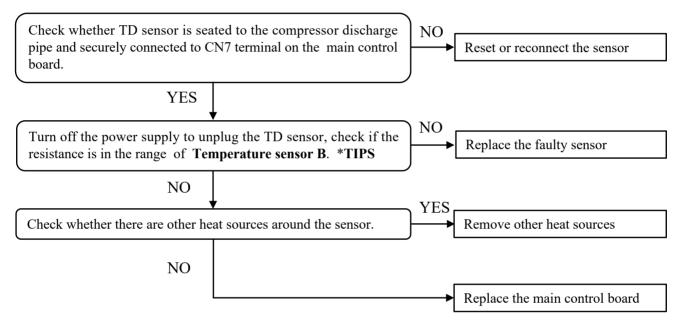
- Too little refrigerant remains in the system
- Dirty plugging of EEV or indoor TXV
- Incorrect TXV type causes high temperature in heating
- Damaged discharge temperature sensor
- Damaged main control board

Technically measure the DC voltage of the temperature sensor also works when outdoor unit powers on.

NOTE: Normal resistance for compressor

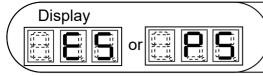
3-phase resistance (UV, UW, VW) for compressor is less than 5Ω .

The insulation resistance (any phase to Ground) for compressor is greater than $100 \text{K}\Omega$.


Compressor discharge temperature (TD) sensor is disconnected or damaged

1.Error definition:

Compressor discharge temperature (TD) sensor is disconnected or damaged. TD<Tc-9°F for 20 minutes, Tc means the condensing temperature.


2.Possible causes:

- Discharge temperature (TD) sensor is disconnected or damaged
- Loose connection to CN7 terminal on main control board
- Damaged main control board
- There are other heat sources around the sensor

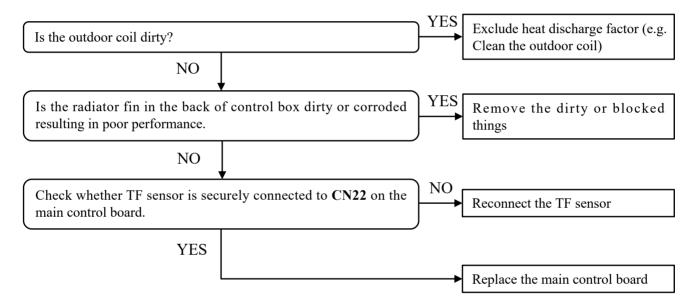
TIPS:

Technically measure the DC voltage of the temperature sensor also works when outdoor unit powers on.

Inverter module temperature (TF) protection

1.Error definition:

P5: The detected value of module temperature (TF) is no less than specified value.


EODA18H-2436B: 199°F in cooling mode/ 185°F in heating mode

EODA18H-4860B: 203°F in cooling mode/ 185°F in heating mode

E5: System locks up when P5 has occurred six times within 3 hours.

2.Possible causes:

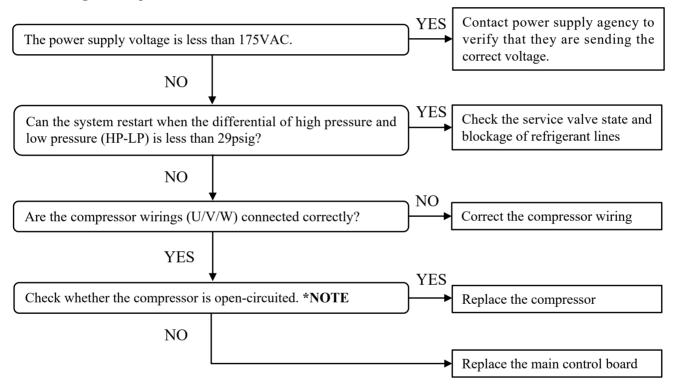
- Clogged fin of radiator resulting in poor heat transfer
- Dirty and blocked outdoor heat exchanger
- Damaged TF sensor(PCB2.0 built-in TF sensor)
- Misjudgment caused by resistance drift of TF sensor
- Damaged main control board

TIPS:

Technically measure the DC voltage of the temperature sensor also works when outdoor unit powers on.

Compressor over-current protection

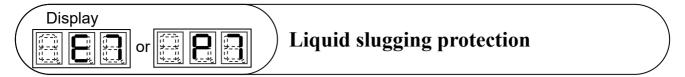
1.Error definition:


P6: The detected compressor current is over the maximum allowed value.

EODA18H-2436B: 14A **EODA18H-4860B**: 20A

E6: System locks up when P6 has occurred six times within 3 hours.

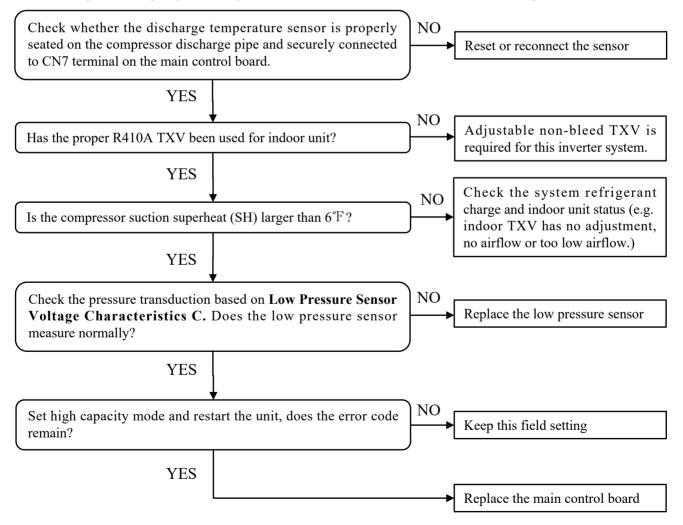
2.Possible causes:

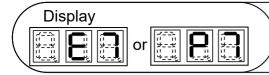

- Abnormal power supply voltage
- Too much refrigerant in the system resulting in liquid slugging at compressor
- Damaged main control board
- Indoor unit is suddenly powered off
- Damaged compressor

NOTE: Normal resistance for compressor

3-phase resistance (UV, UW, VW) for compressor is less than 5Ω .

The insulation resistance (any phase to Ground) for compressor is greater than $100 \text{K}\Omega$.

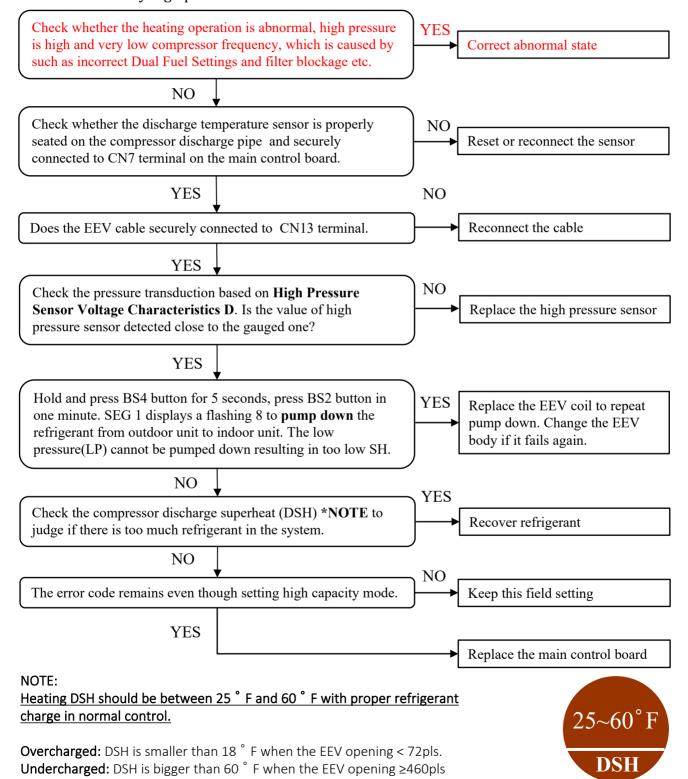

This control is to prevent compressor from damaging because of liquid slugging. When SH<9.0°F and compressor discharge superheat (DSH=TD-SC-TL-1.8) <14.4°F for 20 minutes, starting to accumulate the liquid slugging time. Report P7 once it lasts for 30 minutes. E7: System locks up when P7 has occurred three times in 5 hours.

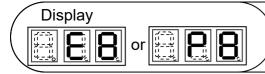

2.Possible causes:

- Damaged or improper TXV for indoor unit in cooling mode
- Abnormal low frequency heating operation
- Overcharged refrigerant
- Damaged discharge temperature (TD) sensor
- Damaged EEV of outdoor unit in heating mode
- Damaged main control board

Cooling mode

Connect a pressure gauge at the gas service valve to calculate suction line superheat.



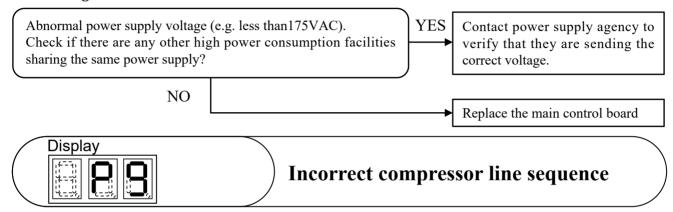


Liquid slugging protection

Heating mode

Connect a pressure gauge to liquid service valve, compare the gauged pressure with the transduced one by high pressure sensor.

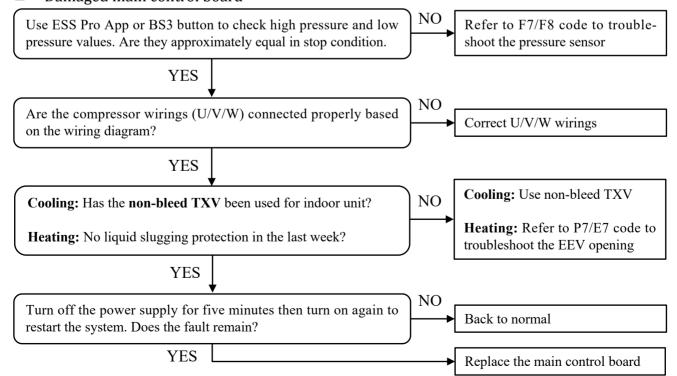
Low compressor voltage protection

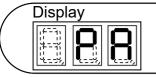

1.Error definition:

P8: The detected compressor voltage by main chip is less than 310VDC.

E8: System locks up when P8 has occurred three times in 60 minutes.

2.Possible causes:


- Abnormal power supply voltage
- Damaged main control board

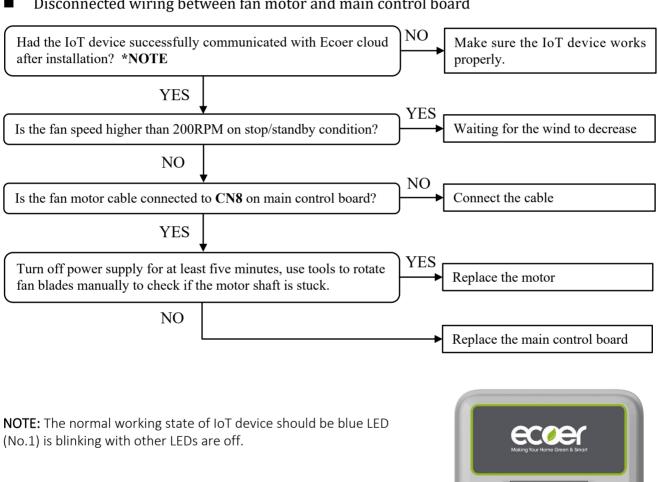


1.Error definition:

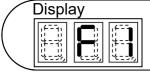
The detected compressor line sequence is incorrect for it's difficult to build pressure difference.

- Damaged pressure sensor
- Incorrect U/V/W connections between main control board and compressor terminals
- Damaged EEV or indoor TXV
- Damaged main control board

DC fan motor over-load protection

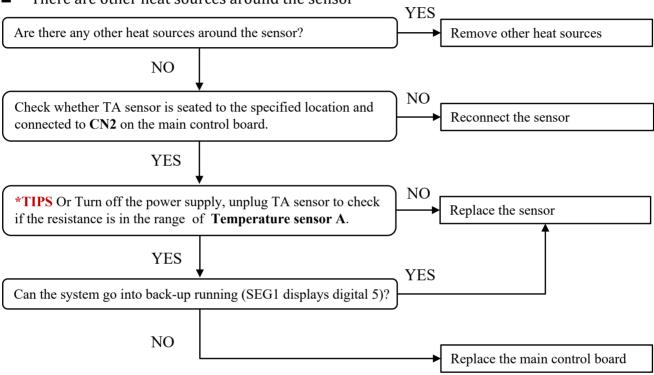

1.Error definition:

ESi Decades Extreme Service Manual


- The fan rotation speed is less than 240RPM if it has the running signal.
- The rotation speed difference between the detected value and target one is over 200RPM for

42/66

- Damaged main control board
- Malfunction of fan motor
- The unit is undergoing hurricane
- Disconnected wiring between fan motor and main control board

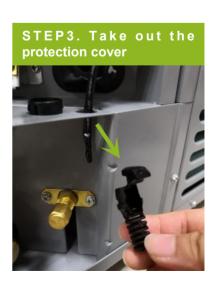

Ambient temperature (TA) sensor fault

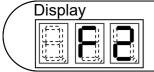
1.Error definition:

The outside temperature (TA) sensor is short circuit or open circuit.

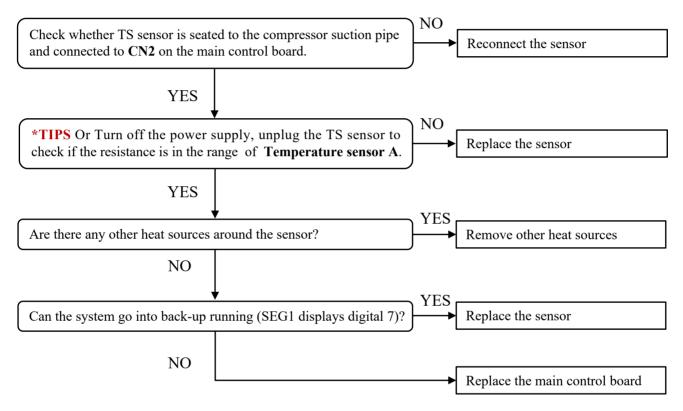
2.Possible causes:

- Damaged main control board
- Loose connection at port on main control board
- Damaged temperature sensor
- There are other heat sources around the sensor




TIPS: Measure the DC voltage of the temperature sensor when outdoor unit powers on.

How to take out the protection cover for TA sensor?


Compressor suction temperature (TS) sensor fault

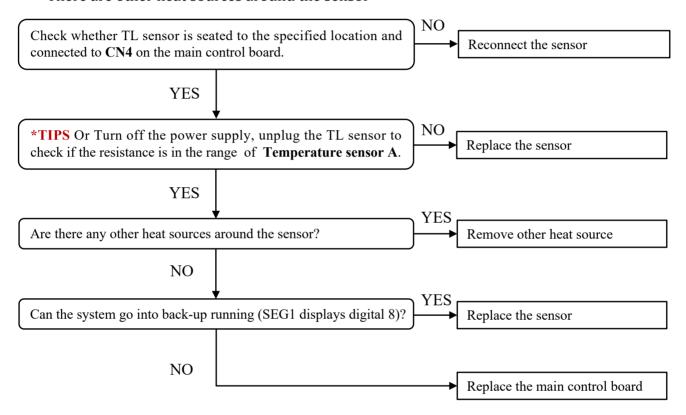
1.Error definition:

The suction temperature (TS) sensor is short circuit or open circuit.

2.Possible causes:

- Damaged main control board
- Loose connection at port on main control board
- Damaged temperature sensor (TS)
- There are other heat sources around the sensor

ESi Decades Extreme Service Manual

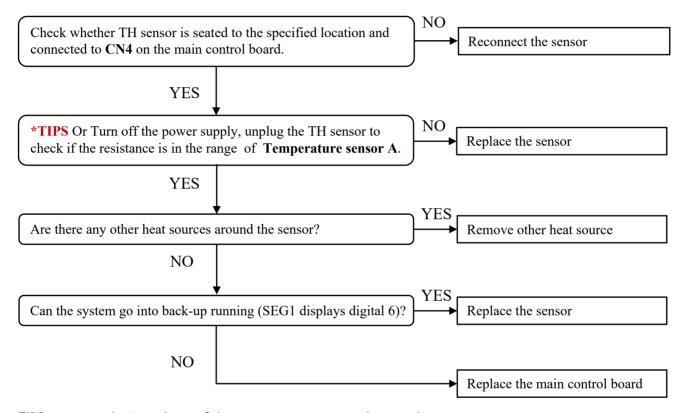

Liquid line temperature (TL) sensor fault

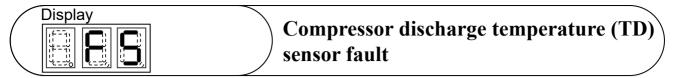
1.Error definition:

The liquid temperature (TL) sensor is short circuit or open circuit.

2.Possible causes:

- Damaged main control board
- Loose connection at port on main control board
- Damaged temperature sensor
- There are other heat sources around the sensor

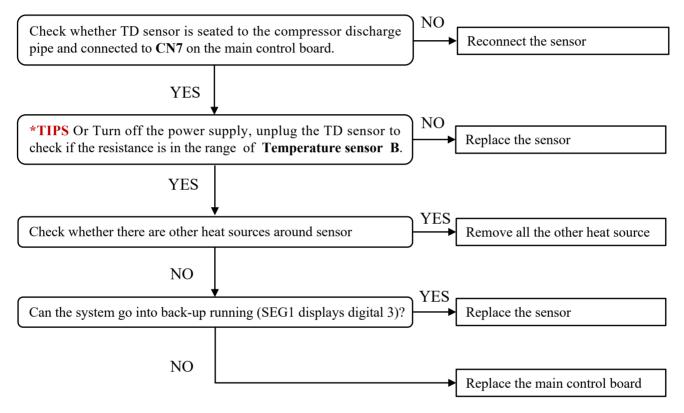


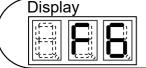


The defrost temperature (TH) sensor is short circuit or open circuit.

2.Possible causes:

- Damaged main control board
- Loose connection at port on main control board
- Damaged temperature sensor
- There are other heat sources around the sensor

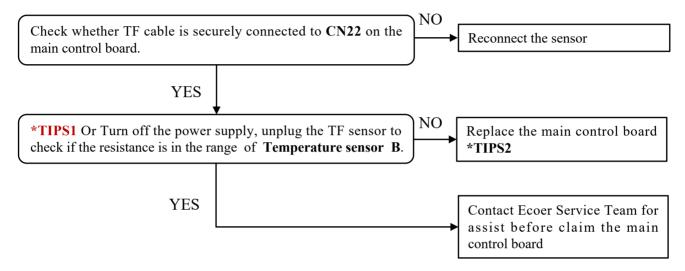




The discharge temperature (TD) sensor is short circuit or open circuit.

2.Possible causes:

- Damaged main control board
- Loose connection at port on main control board
- Temperature sensor failure
- There are other heat sources around the sensor


Inverter module temperature (TF) sensor fault

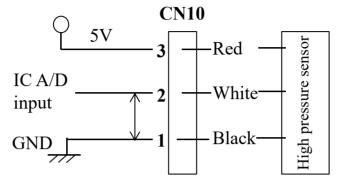
1.Error definition:

The module temperature(TF) sensor is short circuit or open circuit.

2.Possible causes:

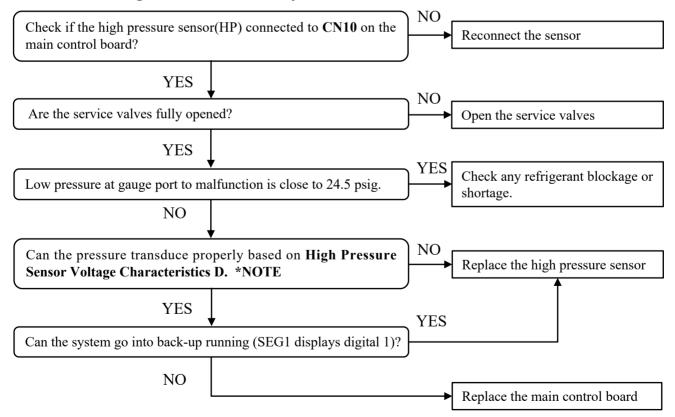
- Damaged main control board
- Loose connection at port on main control board
- Temperature sensor failure(PCB2.0 built-in TF sensor)
- There are other heat sources around the sensor

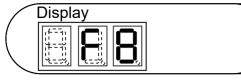
TIPS:


- 1. Measure the DC voltage of the temperature sensor when outdoor unit powers on.
- 2. TF senor has been laid inside the assembly control box with silicon gel contacting the radiator. It's required to replace the main control board in this case.

1.Error definition and method to check:

The high pressure sensor is open or shorted.

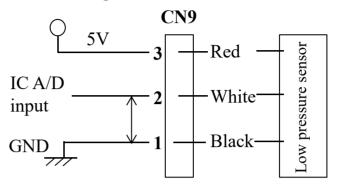

The voltage between CN10 pin(1) and (2) is not in the range $0.59 \sim 4.76$ VDC.


Measure DC voltage within these pins

2.Possible causes:

- Damaged main control board
- Loose connection at port on main control board
- Damaged high pressure sensor
- Too little refrigerant remains in the system

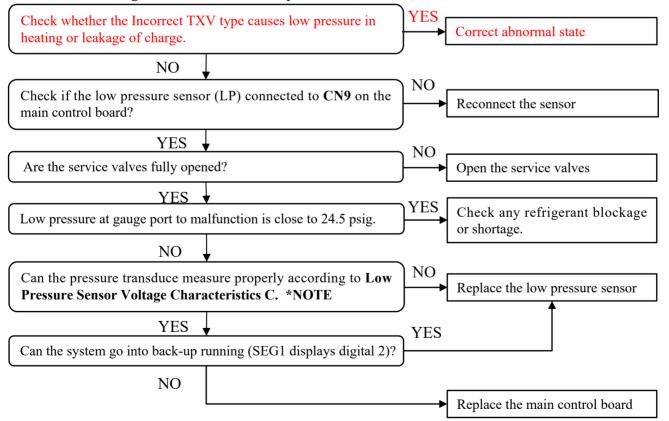
NOTE: Connect a pressure gauge to liquid service valve in cooling mode, gas service valve in heating mode. Compare the value difference between gauged pressure and the transduced one by high pressure sensor (spot check by BS3 button or check the data from ESS Pro App).

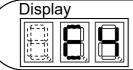


Low pressure (LP) sensor fault

1.Error definition and method to check:

The low pressure sensor is open or shorted.


The voltage between CN9 pin(1) and (2) is not in the range $0.70 \sim 4.50$ VDC.


Measure DC voltage within these pins

2.Possible causes:

- Damaged main control board
- Loose connection at port on main control board
- Incorrect TXV type causes high temperature in heating
- Damaged low pressure sensor
- Too little refrigerant remains in the system

NOTE: Connect a pressure gauge to gauge port, compare the difference between the gauged pressure and the transduced one by low pressure sensor (spot check by BS3 button or check the data from ESS Pro App).

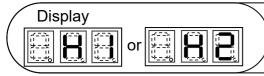
Communication fault between main chip and INV drive chip

1.Error definition and method to check:

Communication fault between the main control chip and inverter chip.

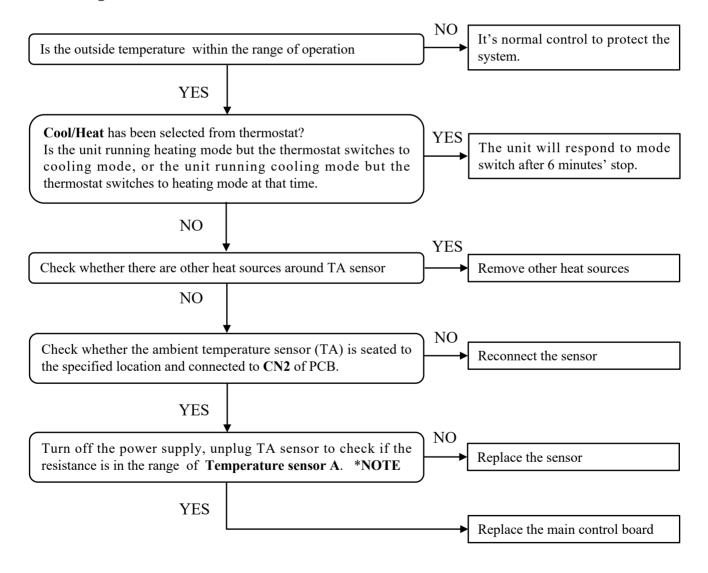
2.Possible causes:

- Loose connection at CN21 terminal
- Damaged main control board


Turn off the power supply for five minutes. Unfasten three screws to take out the black plastic, then reconnect the cable to CN21. Turn on the power to check if the fault remains.

Replace the main control board

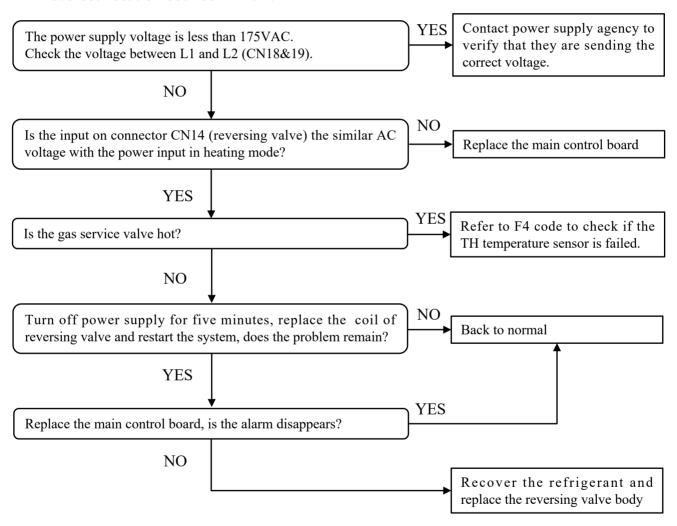
External factor other than error (e.g. noise interference).

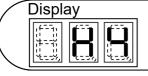


Ambient temperature limit operation

1.Error definition and method to check:

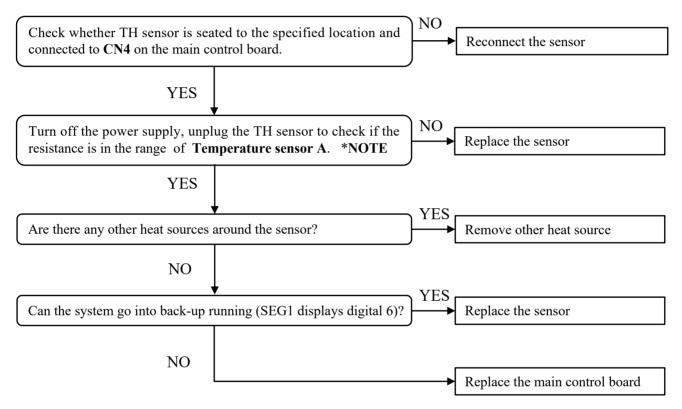
- H1: The detected ambient temperature is absolutely prohibited for cooling. $TA < 20^{\circ}F$ or $\ge 140^{\circ}F$
- H2: The detected ambient temperature is absolutely prohibited for heating. TA \geq 86°F or TA< forced heating stop temperature set by n01


- The ambient temperature exceeds the set range of operation.
- The system is running previous mode
- Damaged ambient temperature sensor (TA)
- Damaged main control board.



4-way (reversing) valve switches incompletely after defrost operation or from cooling mode. Report H3 alarm if TH \geq TL+10.8°F and TH \geq TA+5.4°F.

- Damaged reversing valve(coil or body)
- Damaged main control board
- Abnormal voltage of power supply
- Temperature sensor(TH) failure
- Reversed location between TH and TL

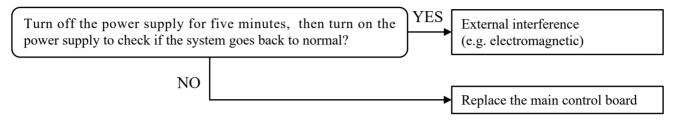

Defrost temperature (TH) sensor is disconnected or damaged

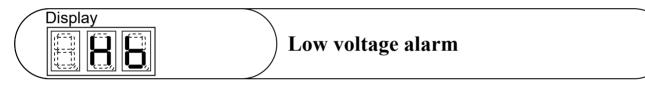
1.Error definition:

The defrost temperature (TH) sensor is short circuit or open circuit.

2.Possible causes:

- Damaged main control board
- The defrost temperature sensor is wrongly seated
- Temperature sensor failure
- There are other heat sources around the sensor

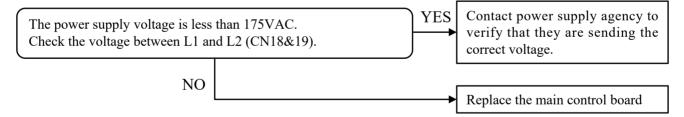




Data cannot be correctly received from the EEPROM to main chip. EEPROM, a type of memory component, remembers contents even though power off.

2.Possible causes:

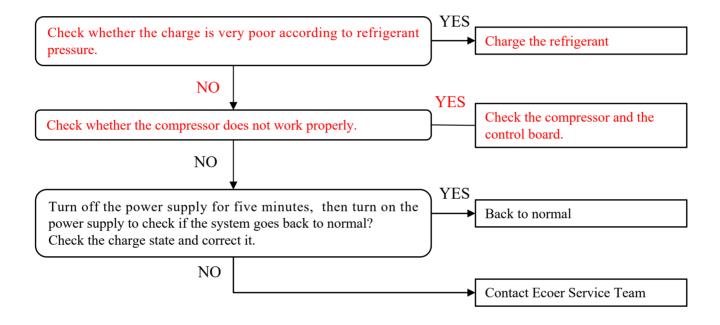
■ Damaged main control board



1.Error definition:

Power supply voltage is less than 175VAC.

- Abnormal power supply voltage
- Damaged main control board

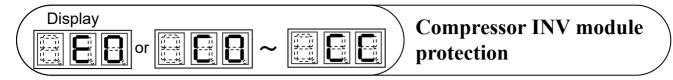


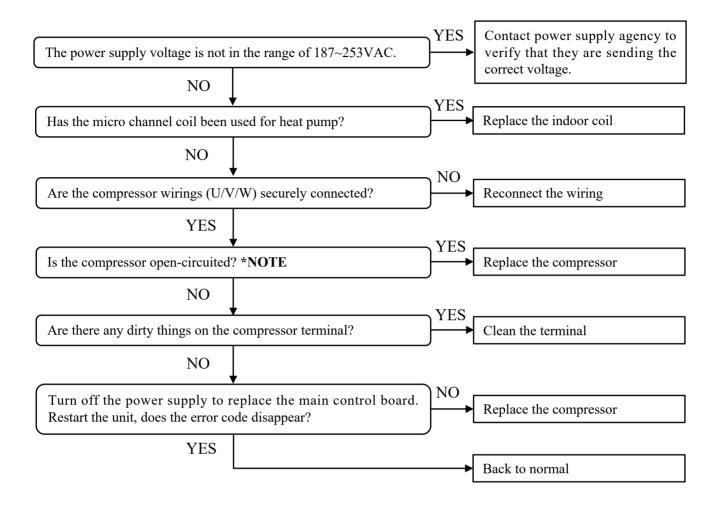
Cannot exit special control (start-up, oil return or defrost)

2.Possible causes:

- Very poor charge
- The compressor does not work properly
- Abnormal signal input from thermostat

www.ecoer.com


Compressor INV module protection


1.Error definition:

Code	LED Display	Definition
CO		Critical over-voltage fault
C1		DC bus over-voltage protection
C2		DC bus under-voltage protection
C3		Over-current protection
C4		Zero speed fault
C7		Compressor speed inconsistent fault
C9		Compressor speed difference between given transient variation and actual operation
CA		AC over-voltage protection
СВ		AC under-voltage protection
CC		PFC error

E0: System locks up when C0~CA has occurred three times in 60 minutes.

- Abnormal power supply voltage
- Power supply disconnected (C2/C7/C9 or C2/C3/C7 report at the same time)
- Dirty compressor terminal or damaged compressor
- Damaged main control board
- Micro channel coil has been used for heat pump
- Compressor terminal or wire is loose.

NOTE: Normal resistance for compressor

3-phase resistance (UV, UW, VW) for compressor is less than 5Ω .

The insulation resistance (any phase to Ground) for compressor is greater than $100 \text{K}\Omega$.

How to diagnose the INV module is damaged or not

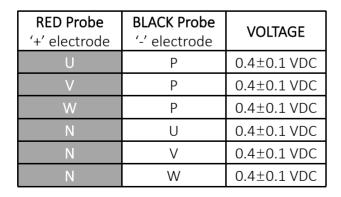
Turn off the power supply for five (5) minutes prior to do the diagnosis.

Disconnect the compressor wiring from the main control board.

To DC motor

CN8

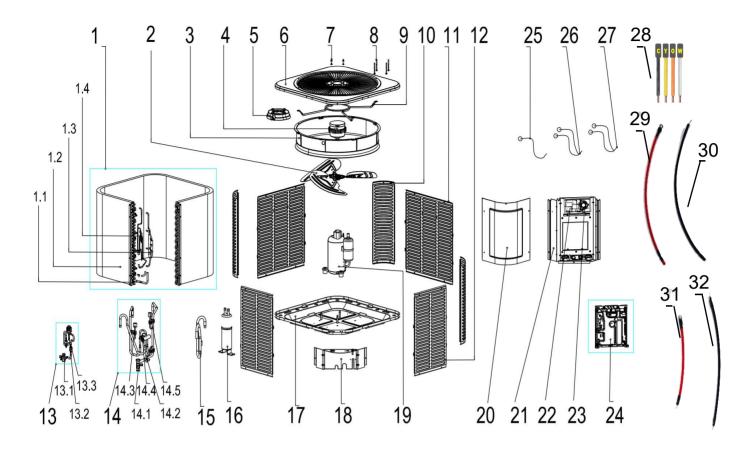
Are the resistances between P (Red wiring in CN8) and U/V/W, N (Black wiring in CN8) and U/V/W over $100K\Omega$? i.e.


 $RP-U > 100K\Omega \mid RP-V > 100K\Omega \mid RP-W > 100K\Omega$ $RN-U > 100K\Omega \mid RN-V > 100K\Omega \mid RN-W > 100K\Omega$ NO INV module is damaged

YES

Use diode ap to measure the voltage between U/V/W and P (Red wiring in CN8), N (Black wiring in CN8) and U/V/W.

Are the voltages normal?


NO

INV module is damaged

YES

INV module works properly

4 Parts list

#	Part Name	Quantity	Parts number	
#			2436BAA	4860BAA
1	Condenser ass'y	1	EAC92011-007897	EAC92011-007898
1.1	Condenser connection pipe ass'y	1	EAC231	235268
1.2	Condenser	1	EAC92011-007895	EAC92011-007896
1.3	Condenser outlet pipe ass'y	1	EAC231235085	EAC231235153
1.4	Condenser inlet pipe ass'y	1	EAC231235084	EAC231235154
2	Fan	1	EAC230801635	
3	Guide ring	1	EAC230700850	
4	Brushless DC Motor	1	EAC230904010	
5	Motor installation board ass'y	1	EAC230803381	
6	Top cover ass'y	1	EAC230803291	
7	Cap nut	4	EAC230803110	
8	Electrical installation bolt	4	EAC230	803111

ш.	Dout Nome	Ougatitus	Parts r	number	Domonik
#	Part Name	Quantity	2436BAA	4860BAA	Remark
9	Roof support frame	1	EAC230)801628	
10	Supporting board	3	EAC230801590B	EAC230801609B	
11	Side board ass'y	2	EAC230803142	EAC230802064A	
12	Side board ass'y	2	EAC230803143	EAC230802065A	
13	High-pressure valve ass'y	1	EAC231235131	EAC231235854	
13.1	Liquid block valve	1	EAC231	1231469	
13.2	Electronic expansion valve (EEV)	1	EAC92008- 000319	EAC231235157	
13.3	EEV solenoid coil	1	EAC312		
14	Reversing valve ass'y	1	EAC92007- 011809	EAC92007- 011812	
14.1	Gas block valve	1	EAC231231468	EAC3120130060	
14.2	Pipe joint ass'y	1	EAC231235472	EAC231235471	
14.3	High pressure sensor	1	EAC231	1235159	Black color
14.4	Reversing valve	1	EAC231 EAC231	235078 235079	EAC231235078-valve body EAC231235079-valve coil
14.5	Low pressure sensor	1	EAC231	1235158	Green color
15	Suction pipe ass'y	1	EAC92007- 011803	EAC92007- 010022	
16	Refrigerant accumulator	1	EAC92003- 000182	EAC92003- 000183	
17	Chassis Parts	1	EAC230	0803293	
18	Lower side plate	1	EAC230803138	EAC230803139	
19	Compressor	1	EAC92014- 000860	EAC231235532	
20	Upper cover plate	1	EAC230803313	EAC230803309	
21	Electrically controlled mounting board	1	EAC230803312	EAC230803310	
22	Noise filter assy' (EMI)	1	EAC2313000005	EAC2313000006	
23	PFC inductor	1	EAC230904160	EAC230904161	
24	Motherboard component	1	EAC230904158	EAC230904159	
25	Discharge Temp. sensor	1	EAC3160	130008A	TD temperature sensor
26	Pipe Temp. sensor ass'y	1	EAC230	901018	TL temperature sensor TH temperature sensor
27	Temp. sensor ass'y	1	EAC230	901233	TS temperature sensor TA temperature sensor
28	Thermostat wiring connector	1	EAC230)904254	To thermostat
29	Power cable (RED)	1	EAC230904301		
30	Power cable (BLACK)	1	EAC230904302		
31	Power cable connecting EMI and PCB CN19 (RED)	1	EAC230	904303	
32	Power cable connecting EMI and PCB CN18 (BLACK)	1	EAC230	904304	

5 Appendix

5.1 Sensor Characteristic

Temperature sensor A* (TS, TH, TA, TL)

Temp. (°C)	Тетр. (°F)	Resistanc e (KΩ)	Voltage (V)
-20	-4	104.86	2.77
-19	-2.2	98.84	2.74
-18	-0.4	93. 21	2.72
-17	1.4	87. 93	2.69
-16	3.2	82. 98	2.66
-15	5	78. 33	2.63
-14	6.8	73. 97	2.6
-13	8.6	69.88	2.57
-12	10.4	66.03	2.53
-11	12.2	62.42	2.5
-10	14	59.02	2.46
-9	15.8	55.82	2.43
-8	17.6	52.81	2.39
-7	19.4	49.98	2.36
-6	21.2	47. 32	2.32
-5	23	44.81	2. 28
-4	24.8	42.45	2. 24
-3	26.6	40. 22	2.2
-2	28.4	38. 12	2.16
-1	30.2	36. 15	2. 12
0	32	34. 28	2.08
1	33.8	32. 52	2.04
2	35.6	30.86	2
3	37.4	29. 29	1.96
4	39.2	27.81	1.92
5	41	26. 42	1.88
6	42.8	25. 10	1.84
7	44.6	23.85	1.79
8	46.4	22.67	1.75
9	48.2	21.56	1.71
10	50	20.50	1.67
11	51.8	19. 51	1.63
12	53.6	18. 56	1.59
13	55. 4	17. 67	1.55
14	57. 2	16.83	1.51
15	59	16.03	1. 47
16	60.8	15. 27	1.43
17	62.6	14. 55	1.39
18	64.4	13.87	1.35
19	66.2	13. 23	1.31
20	68	12.62	1.28
21	69.8	12.04	1.24

T)	T)	D	V 1.
Temp. (°C)	Тетр. (°F)	Resistance $(K\Omega)$	Voltage (V)
22	71.6	11. 49	1.2
23	73. 4	10. 97	1.17
24	75. 2	10.47	1.13
25	77	10.00	1. 1
26	78.8	9. 55	1.07
27	80.6	9.13	1.03
28	82.4	8. 73	1
29	84. 2	8. 35	0.97
30	86	7. 98	0.94
31	87.8	7.64	0.91
32	89.6	7. 31	0.88
33	91.4	6.99	0.86
34	93.2	6.70	0.83
35	95	6.41	0.8
36	96.8	6.14	0.78
37	98.6	5.89	0.75
38	100.4	5.64	0.73
39	102.2	5.41	0.7
40	104	5. 19	0.68
41	105.8	4.97	0.66
42	107.6	4.77	0.64
43	109.4	4. 58	0.61
44	111.2	4. 39	0.59
45	113	4. 22	0.57
46	114.8	4.05	0.56
47	116.6	3.89	0.54
48	118.4	3.74	0.52
49	120.2	3. 59	0.5
50	122	3.45	0.49
51	123.8	3.32	0.47
52	125.6	3. 19	0.45
53	127.4	3. 07	0.44
54	129.2	2.95	0.42
55	131	2.84	0.41
56	132.8	2. 73	0.4
57	134.6	2.63	0.38
58	136.4	2. 53	0.37
59	138. 2	2.44	0.36
60	140	2.35	0.35
61	141.8	2. 26	0.34
62	143.6	2. 18	0.32
63	145.4	2.10	0.31

T	Т	D . '	V 1.
Temp. (°C)	Temp. (°F)	Resistance (KΩ)	Voltage (V)
64	147.2	2.02	0.3
65	149	1.95	0.29
66	150.8	1.88	0.28
67	152.6	1.81	0.27
68	154.4	1.75	0.26
69	156.2	1.68	0.26
70	158	1.63	0.25
71	159.8	1. 57	0. 24
72	161.6	1.51	0.23
73	163.4	1.46	0.22
74	165.2	1.41	0.22
75	167	1.36	0.21
76	168.8	1.31	0.2
77	170.6	1. 27	0.2
78	172.4	1. 23	0.19
79	174.2	1.19	0.18
80	176	1.15	0.18
81	177.8	1.11	0.17
82	179.6	1.07	0.17
83	181.4	1.03	0.16
84	183. 2	1.00	0.16
85	185	0.97	0.15
86	186.8	0.94	0.15
87	188.6	0.91	0.14
88	190.4	0.88	0.14
89	192.2	0.85	0.13
90	194	0.82	0.13
91	195.8	0.80	0.13
92	197.6	0.77	0.12
93	199.4	0.75	0.12
94	201.2	0.72	0.12
95	203	0.70	0.11
96	204.8	0.68	0.11
97	206.6	0.66	0.11
98	208.4	0.64	0.1
99	210.2	0.62	0.1
100	212	0.60	0.1
101	213.8	0.59	0.09
102	215.6	0. 57	0.09
103	217.4	0.55	0.09
104	219.2	0.54	0.09
105	221	0. 52	0.08

Remarks:

Above table shows the average resistance corresponding to the temperature. Resistance tolerance is $\pm 6\%$.

Temperature sensor B* (TF, TD)

Temp.	Temp.	Resistance (KΩ)	Voltage (V)
-20	-4	517.84	3.03
-19	-2.2	489.93	3.01
-18	-0.4	463.65	3
-17	1.4	438.89	2.98
-16	3. 2	415. 57	2.96
-15	5	393. 59	2.95
-14	6.8	372.87	2.93
-13	8.6	353. 34	2.91
-12	10.4	334. 92	2.89
-11	12.2	317. 55	2.87
-10	14	301.16	2.85
-9	15.8	285. 70	2.83
-8	17.6	271. 10	2.81
-7 -6	19.4	257. 33	2.79
-6 -5	21. 2	244. 32	2.77
-5 -4	23	232. 03	2.74
-4 -3	24. 8 26. 6	220. 42 209. 45	2.72
-3 -2	28. 4	199. 08	2. 67
-2	30. 2	189. 27	2. 64
0	32	180. 00	2. 62
1	33.8	171. 23	2. 59
2	35.6	162. 93	2. 56
3	37. 4	155. 07	2. 53
4	39. 2	147. 63	2. 5
5	41	140. 59	2. 47
6	42.8	133. 92	2. 44
7	44. 6	127. 60	2.41
8	46. 4	121.60	2. 38
9	48. 2	115. 93	2.35
10	50	110. 54	2.32
11	51.8	105. 43	2. 28
12	53.6	100. 59	2.25
13	55. 4	95. 99	2. 22
14	57.2	91.62	2. 18
15	59	87. 48	2.15
16	60.8	83. 54	2.11
17	62.6	79.80	2.08
18	64.4	76. 25	2.04
19	66.2	72.87	2.01
20	68	69. 66	1.97
21	69.8	66. 61	1. 93
22	71.6	63. 70	1.9
23	73. 4	60. 94	1.86
24	75. 2	58. 31	1.83
25	77	55. 81	1.79
26	78.8	53. 42	1.76
27	80.6	51. 15	1.72
28	82.4	48. 99	1.68
29	84. 2	46. 93	1.65
30	86	44. 97	1.61

Temp. (°C)	Temp. (°F)	Resistance (KΩ)	Voltage (V)
31	87.8	43.10	1.58
32	89.6	41.31	1.54
33	91.4	39.61	1.51
34	93.2	37. 99	1.48
35	95	36. 44	1.44
36	96.8	34. 96	1.41
37	98.6	33. 55	1.37
38	100.4	32. 21	1.34
39	102.2	30.92	1.31
40	104	29.69	1.28
41	105.8	28. 52	1.25
42	107.6	27.40	1.22
43	109.4	26. 32	1.18
44	111.2	25. 30	1.15
45	113	24. 32	1.13
46	114.8	23.38	1.1
47	116.6	22.49	1.07
48	118.4	21.63	1.04
49	120.2	20.81	1.01
50	122	20.02	0.99
51	123.8	19. 27	0.96
52	125.6	18. 55	0.93
53	127.4	17.86	0.91
54	129.2	17. 20	0.88
55	131	16. 57	0.86
56	132.8	15.96	0.84
57	134.6	15. 38	0.81
58	136.4	14.82	0.79
59	138.2	14. 29	0.77
60	140	13.77	0.75
61	141.8	13. 28	0.73
62	143.6	12.81	0.71
63	145.4	12. 36	0.69
64	147.2	11.92	0.67
65	149	11.51	0.65
66	150.8	11.11	0.63
67	152.6	10.72	0.61
68	154.4	10.35	0.6
69	156.2	10.00	0.58
70	158	9.66	0.56
71	159.8	9. 33	0.55
72	161.6	9.01	0.53
73	163.4	8.71	0.52
74	165. 2	8.42	0.5
75	167	8.14	0.49
76	168.8	7.87	0.47
77	170.6	7.61	0.46
77	170.6	7. 36	0.45
78	172.4	7. 12	0.43
79	174.2	6.89	0.42
80	176	6.86	0.42

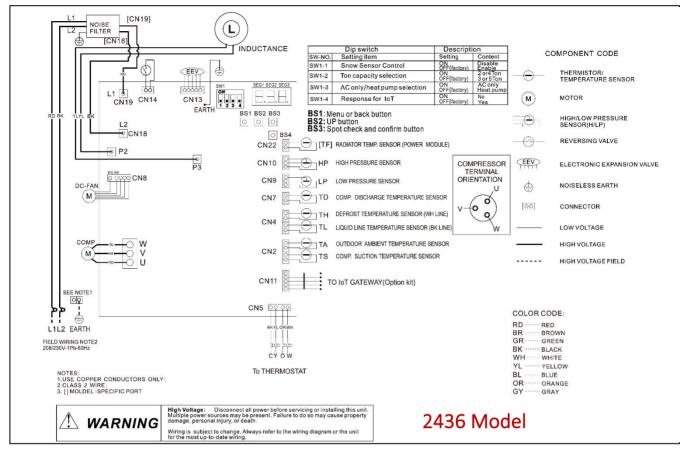
Temp.	Temp.	Resistance	Voltage
(° C)	(°F)	$(K \Omega)$	(V)
81	177.8	6. 67	0.41
82	179.6	6.46	0.4
83	181.4	6. 25	0.39
84	183.2	6.05	0.38
85	185	5. 86	0.37
86	186.8	5. 68	0.36
87	188.6	5. 50	0.35
88	190.4	5. 33	0.34
89	192.2	5. 16	0.33
90	194	5. 00	0. 32
91	195. 8	4. 85	0.31
92	197. 6	4. 70	0.3
93	199. 4	4. 55	0. 29
94	201. 2	4. 42	0. 28
95	203	4. 28	0.28
96	204.8	4. 15	0. 27
97	206.6	4. 03	0. 26
98	208. 4	3. 91	0. 25
99	210. 2	3. 79	0. 25
100	212	3. 68	0. 24
101	213.8	3. 57 3. 46	0. 23 0. 23
102	215. 6	3. 36	
103 104	217. 4 219. 2	3. 26	0. 22 0. 21
104	221	3. 17	0. 21
106	222.8	3. 09	0. 21
107	224.6	3.00	0. 2
108	226. 4	2. 92	0.19
109	228. 2	2. 84	0. 19
110	230	2. 76	0. 18
111	231.8	2. 68	0. 18
112	233. 6	2.60	0. 17
113	235. 4	2. 53	0. 17
114	237. 2	2. 46	0.16
115	239	2. 39	0.16
116	240.8	2. 33	0.16
117	242.6	2. 26	0.15
118	244. 4	2.20	0.15
119	246. 2	2.14	0.14
120	248	2.08	0.14
121	249.8	2.03	0.14
122	251.6	1.97	0.13
123	253.4	1.92	0.13
124	255. 2	1.87	0.13
125	257	1.82	0.12
126	258.8	1.77	0.12
127	260.6	1. 72	0.12
128	262.4	1.68	0.11
129	264. 2	1. 63	0.11
130	266	1.59	0.11

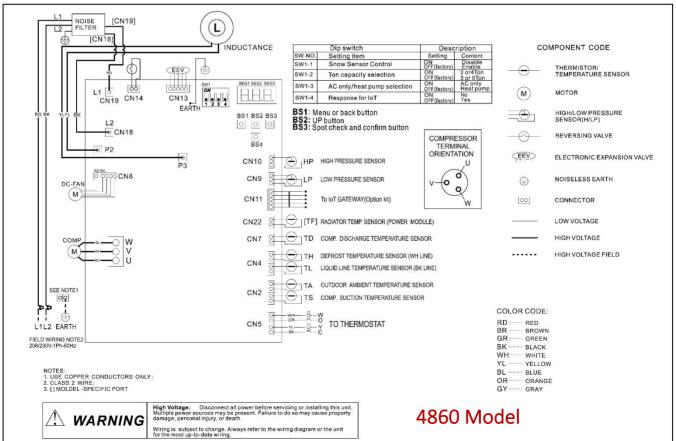
Remarks:

Above table shows the average resistance corresponding to the temperature. Resistance tolerance is $\pm 12\%$.

Low Pressure Sensor Voltage Characteristics C*

Low	Low	Danistanas	0
pressure	pressure	Resistance $(K\Omega)$	Output voltage(V)
(MPa)	(psig)	40 E1	0. 70
0.10	14. 5 16	49. 51	
0.11		47. 91	0.72
0. 12	17.4	46. 40	0.74
0.13	18.9	44. 97	0.76
0.14	20.3	43. 61	0.78
0. 15	21.8	42. 32	0.80
0. 16	23. 2	41.09	0.82
0. 17	24. 7	39. 92	0.84
0.18	26. 1	38. 80	0.86
0.19	27.6	37. 74	0.88
0.21	30.5	35. 74	0. 92
0.22	31.9	34. 81	0.94
0. 23	33.4	33. 92	0.96
0. 24	34.8	33. 06	0. 98
0.26	37.7	31. 45	1.02
0.27	39. 2	30.69	1.04
0.29	42.1	29. 25	1.08
0.30	43.5	28. 58	1.10
0.32	46.4	27. 29	1. 14
0.33	47.9	26.68	1. 16
0.35	50.8	25. 52	1. 20
0.37	53.7	24. 44	1. 24
0.38	55. 1	23. 92	1. 26
0.40	58	22.94	1.30
0.42	60.9	22.01	1.34
0.44	63.8	21. 14	1.38
0.46	66.7	20. 32	1.42
0.48	69.6	19.54	1.46
0.50	72.5	18.81	1.50
0.52	75. 4	18. 11	1.54
0.54	78.3	17. 45	1.58
0.56	81.2	16.82	1.62
0.58	84.1	16. 22	1.66
0.61	88.5	15. 37	1.72
0.63	91.4	14.84	1.76
0.65	94.3	14. 33	1.80


Low pressure (MPa)	Low pressure	Resistance (KΩ)	Output voltage(V)
0.68	(psig) 98.6	13. 61	1.86
0.70	102	13. 15	1. 90
0.73	106	12. 50	1.96
0.76	110	11.89	2. 02
0.78	113	11.50	2.06
0.81	117	10. 95	2. 12
0.84	122	10. 43	2. 18
0.87	126	9. 93	2. 24
0.90	131	9. 46	2. 30
0.93	135	9.02	2. 36
0.96	139	8. 59	2. 42
0.99	144	8. 19	2. 48
1.02	148	7. 81	2.54
1.06	154	7. 32	2.62
1.09	158	6. 98	2. 68
1.13	164	6. 54	2.76
1.16	168	6. 23	2.82
1.20	174	5. 84	2.90
1.24	180	5. 46	2. 98
1.27	184	5. 20	3.04
1.31	190	4. 86	3. 12
1.35	196	4. 53	3. 20
1.39	202	4. 23	3. 28
1.43	207	3. 93	3. 36
1.48	215	3. 59	3.46
1.52	220	3. 32	3. 54
1.56	226	3.07	3.62
1.61	233	2. 77	3.72
1.65	239	2. 55	3.80
1.70	247	2. 27	3.90
1.75	254	2.02	4.00
1.80	261	1.77	4.10
1.85	268	1.54	4.20
1.90	276	1.31	4.30
1.95	283	1.10	4.40
2.00	290	0.90	4.50


High Pressure Sensor Voltage Characteristics D*

High pressure (MPa)	High pressure (psig)	Resistance (KΩ)	Output voltage(V)
0.1	14.5	60.60	0.59
0.2	29	51.74	0.67
0.3	43.5	44. 90	0.76
0.4	58	39. 47	0.85
0.5	72.5	35. 05	0.93
0.6	87	31. 38	1.02
0.7	101.5	28. 29	1. 11
0.8	116	25. 64	1. 20
0.9	130.5	23. 36	1. 28
1.0	145	21. 36	1. 37
1. 1	159.5	19.61	1.46
1.2	174	18.05	1.54
1.3	188.5	16.66	1.63
1.4	203	15. 41	1.72
1.5	217.5	14. 27	1.80
1.6	232	13. 25	1.89
1.7	246.5	12. 31	1. 98
1.8	261	11. 45	2.07
1.9	275.5	10.66	2. 15
2.0	290	9.94	2. 24
2. 1	304.5	9. 26	2. 33
2. 2	319	8.64	2.41
2.3	333.5	8.06	2.50
2.4	348	7. 52	2.59
2.5	362. 5	7.01	2. 67
2.6	377	6. 54	2. 76
2. 7	391.5	6.09	2. 85
2.8	406	5. 67	2. 93
2.9	420.5	5. 28	3.02
3.0	435	4. 90	3. 11

High pressure (MPa)	High pressure (psig)	Resistance (KΩ)	Output voltage(V)
3. 1	449.5	4. 55	3. 20
3. 2	464	4. 22	3. 28
3. 3	478.5	3.90	3. 37
3. 4	493	3.60	3. 46
3. 5	507.5	3. 31	3. 54
3.6	522	3. 04	3.63
3. 7	536. 5	2. 78	3. 72
3.8	551	2. 53	3.80
3.9	565.5	2.30	3.89
4.0	580	2.07	3. 98
4. 1	594.5	1.85	4. 07
4. 2	609	1.65	4. 15
4. 3	623.5	1. 45	4. 24
4. 4	638	1. 26	4. 33
4.5	652. 5	1.07	4. 41
4.6	667	0.90	4. 50
4. 7	681.5	0.73	4. 59
4.8	696	0.56	4. 67
4. 9	710. 5	0.40	4. 76

5.2 Wiring Diagram

©2023 ECOER INC.

43671 Trade Center Place, Suite 100 Dulles, VA 20166

Tel: 703-348-2538

www.ecoer.com